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Chapter 1

Genetic Synthesis of Recurrent Neural
Networks

1.1  Introduction

Many of the systems we wish to model in the real world are often

nonlinear dynamical systems.  This is particularly true in the controls area in

which we wish to model the forward or inverse dynamics of systems such as

airplanes, engines, rockets, spacecrafts, and robots.  Many of the systems also

tend to exhibit state dependent behavior.  The problem of developing a

system for context dependent pattern recognition, in which the classification

of a pattern is dependent on the context in which it appears, is an example.

When applying neural networks to problems involving nonlinear

dynamical or state dependent systems, neural networks with feedbacks can in

some cases provide significant advantages over purely feedforward networks.

The feedbacks allow for recursive computation and the ability to represent

state information.  In some cases a system with feedbacks is equivalent to a

much larger and possibly infinite feedforward system.  Neural networks

employing an architecture that incorporates feedbacks are referred to as

Recurrent Neural Networks (RNNs).

Since the rebirth of artificial neural networks in the mid 1980s, a
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significant amount of work has been done in studying the capabilities and

limitations of RNNs, and in applying them to various problems of pattern

recognition and control.  However, the use of RNNs has not been nearly as

extensive as that of feedforward networks.  The primary reason for this stems

from the difficulty of developing generally applicable learning algorithms for

RNNs.  The feedforward networks benefit from the fact that they can be

trained using gradient decent optimization algorithms such as the

backpropagation algori thm [Rumelhart and McClel land, 1986].

Unfortunately, since the gradient of the error with respect to the connection

strength is not easily solvable in general for RNNs such gradient based

optimization algorithms are not always applicable.

In this thesis we explore the applicability of a heuristic optimization

algorithm, referred to as the Genetic Algorithm (GA), to the problem of

finding the network parameters and possibly even the network architecture

for a RNN.  The GA has proven to be quite successful on a number of other

difficult optimization problems [Goldberg, 1989] and has even been applied

to the synthesis (determining both the network parameters and architecture)

of feedforward neural networks [Whitley, Starkweather, and Bogart, 1990].

However, the use of GAs for synthesizing RNNs still needs to be extensively

explored.
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1.2  Background

Much of the earlier research in developing training algorithms for

RNNs has been focused on using gradient descent algorithms.  There are

basically two classes of gradient descent algorithms used with RNNs:

backpropagation through time and recursive backpropagation, also referred

to as dynamic propagation or real time recurrent learning.  Although both

algorithms are based on variations of the backpropagation algorithm, they

tend to be much more complicated then the backpropagation algorithm used

for feedforward networks.  Also, both algorithms have a different

formulation depending on weather the network to be trained is a discrete time

or a continuous time RNN.

The backpropagation through time algorithm is based on converting

the network from a feedback system to a purely feedforward system by

unfolding the network over time.  Thus, if the network is to process a signal

that is  time steps long, then  copies of the network are created and the

feedback connections are modified so that they are feedforward connections

from one network to the subsequent network.  The network can then be

trained as if it is one large feedforward network with the modified weights

being treated as shared weights.  The application of this algorithm to discrete

time RNNs was popularized by its description and use in the well-known

PDP book [Rumelhart and McClelland, 1986].  The continuous time version

of backpropagation through time was later derived by Pearlmutter

n n
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[Pearlmutter, 1989].  A major limitation of the backpropagation through time

algorithm is that one must know in advance how many copies of the network

to create when unfolding the network over time.

The recursive backpropagation algorithm is based on recursively

updating the derivatives of the output and error.  These updates are computed

using a sequence of calculations at each iteration.  The weights are updated

either after each iteration or after the final iteration of the epoch.  This

algorithm was proposed for discrete time RNNs by a number of different

researchers [Kuhn, 1987; Mozer, 1988; Robinson and Fallside, 1987;

Williams and Zipser, 1989].  The continuous time version of recursive

backpropagation was first proposed by Pineda [Pineda, 1988].  The major

disadvantage of this algorithm is that it requires an extensive amount of

computation at each iteration.

Another algorithm which has been shown to descend an error function

and has been applied to RNNs is the deterministic Boltsman Machine

learning rule [Peterson and Anderson, 1987].  Unlike backpropagation based

learning which requires a different formulation for discrete and continuous

time networks the Boltsman Machine learning rule can be applied equally

well to both types of RNNs.  The Boltsman Machine learning rule treats the

system error of the RNN as an energy function that must be minimized.  A

generating function is used to generate the next potential solution based on

the current solution.  An acceptance function is used to decide weather to
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keep the current solution or to accept the newly generated solution based on

the difference in the energy of the two solutions.  An annealing schedule is

used to reduce the neighborhood of the newly generated solutions and also to

increase the probability of accepting better solutions and rejecting worse

solutions.

Simulated annealing, which works similar to Boltsman Machine

learning, but uses a different generating function and annealing schedule, has

also been applied to training RNNs [Van den Bout and Miller, 1989].  If an

appropriate annealing schedule is used, both of these methods are guaranteed

to find the global minimum.  However, the amount of time required to find

the global minimum may be unacceptable for difficult problems.  Both

algorithms are also very sequential and do not lend easily to parallel

implementation.

The use of evolutionary based algorithms for training neural networks

has recently begun to receive a considerable amount of attention.  Much of

the research  however has focused on the training of feedforward networks

[Fogel, Fogel, and Porto, 1990; Whitley, Starkweather, and Bogart, 1990].

Research on applying evolutionary algorithms to RNNs is currently quite

limited, but seems to be increasing.  While work on this thesis was in

progress, some papers have appeared in the neural network literature dealing

strictly with an evolutionary approach to synthesizing RNNs [Angeline,

Gregory, and Jordan, 1994; Beer and Gallagher, 1992; Bornholdt and
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Graudenz, 1992].  However, most of these papers describe approachs which

use ad hoc operators for combining and mutating networks and do not use the

much studied bit string representation for encoding and manipulating the

networks.

One of the difficulties in using a bit string representation is that it does

not allow an easy way to encode a variable number of parameter.  When

encoding neural networks the number of parameter will vary depending on

the architecture of the network.  Thus, many researchers have avoided using a

bit string representation when the architecture of the network is also

supposed to be determined by the evolutionary process.  Later in this thesis

we present and examine a modification to the standard genetic algorithm

which allows the network architecture to be selected while still using a bit

string representation and the usual genetic operators.

1.3  Network Architecture

The recurrent neural network architecture used throughout this thesis is

a two layer network in which the second layer is very similar to the Hopfield
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network.  This network is shown in Figure 1.

Figure 1:  A two layer network architecture is used.  The first layer con-
sists of input nodes which range compress the input and fan it out to all the
nodes in the second layer.  The nodes in the second layer are fully intercon-
nected and each has an internal state.  Some of the nodes in the second
layer are output nodes while the remaining are hidden nodes.

Figure 2:  The activation function used for the nodes in the second layer is
a piecewise linear function with hard saturation limits at 2 and -2.

The first layer is composed of input nodes which simply range

compress the applied input (based on prespecified range limits) so that it is in

the range [0, 1] and fanout the result to all nodes in the second layer.  The

nodes in the second layer have an internal state and compute their outputs

synchronously based on this state.  The outputs are computed using the

piecewise linear activation function shown in Figure 2.  A subset of the nodes

in this layer are taken to be “output nodes” and the remaining serve as

“hidden nodes”.  The dynamics of the network are described by the following

. . . .
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differential equations when continuous time nodes are desired:

In a computer simulation these differential equations are implemented

as:

The first order Euler equation is used to compute the next state of the

network from the current state and inputs.  is the nonlinear activation

function described earlier.  is the output of node  in the second layer and

is its internal state.  is the input to the th node in the second layer at

time .  is the weight from the th node in the first layer to the th node in

the second layer.  is the weight from the th node in the second layer to

the th node in the second layer.  is the threshold parameter of the th node

in the second layer and  is its nonnegative time constant.  For all

experiments described in this thesis the range of the parameters ,  and

 were limited between [-32, 32] and the parameter  was limited between

[0, 32].
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When discrete time nodes are required the dynamics are defined by the

following equations:

This formulation is reached by setting  and  equal to 1 in the

continuous time equations.

1.4  Goals of this Research

The main goal of this research is to investigate the genetic algorithm as

a means for finding the network parameters and architecture that allow a

RNN to solve the given problem.  Our secondary goal is to gain experience in

apply GAs to RNN.  The GA has many parameters and methods that can be

varied in an attempt to improve the performance of the GA.  A better

understanding of the relationship between these variables and their effect on

the final performance of the GA is required so that a correct assessment of the

GAs capabilities can be made.

1.5  Overview of the Thesis

We have described in this chapter the architecture of the RNN that will

be used in this thesis.  We have also given a background of the previous work

that has been done with the application of various training algorithms to
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RNNs.  In the next chapter we describe the standard genetic algorithm.  In

Chapter three we apply this algorithm to the XOR problem.  Chapter four

examines possible ways of improving the standard genetic algorithm using

the results of Chapter three as a basis for comparison.  Chapter five and six

apply the best GA found in Chapter four to problems which are more

dynamical.  In Chapter five we try to find RNNs that learn finite state

machines from examples.  In Chapter six we apply RNNs to the problem of

balancing an inverted pendulum. Finally in Chapter seven we discuss the

lessons learned in applying RNNs to dynamical problems and the

applicability of GAs as a heuristic optimization algorithm for finding the

network parameters and architecture.  We also discuss some possible

directions for future research.
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Chapter 2

The Standard Genetic Algorithm

2.1  Introduction

The problem of finding a set of parameters for a neural network which

allows it to solve the given problem can be viewed as a parameter

optimization problem.  The range of the various parameters such as weights,

thresholds and time constants can be bounded between a minimum and

maximum value so that the size of the search space is finite.  Once the

problem is viewed in this way, the various methods available for solving

multivariable function optimization problems become applicable.  However,

methods which make use of gradient information are not applicable in our

case since the function we are trying to optimize may not be differentiable.

Of particular interest are methods which use only the value of the function in

the course of the optimization process.  Simulated annealing and genetic

algorithms are two optimization methods which use only the value of the

function in trying to find the global optimum.

In the method of simulated annealing a current best solution is

maintained and the next solution is generated from the current solution.  The

distance of the generated solution from the current solution can be described

by a Gaussian distribution.  The generated solution is accepted as the current



12

best solution using a probability computed by applying a sigmoid function to

the difference between the function value of the generated and current

solution.  Both the distribution of the generated solutions and the probability

of their acceptance are a function of an annealing schedule such that as time

progresses the average distance of the generated solutions from the current

solution gets shorter and the probability of accepting better solutions and

rejecting worse solutions gets higher.  Although this method is guaranteed to

find the optimal solution it can require a prohibitively long time to do so for

large problems.  Also due to its sequential nature the algorithm does not lend

itself to parallel implementations.

The genetic algorithm on the other hand is not guaranteed to find the

optimal solution, but is capable of finding good solutions quickly [Goldberg,

1989].  Also since a population of solutions are maintained the genetic

algorithm is inherently parallel.

2.2  Natural and Artificial Evolution

As described initially by Darwin, evolution is the process by which a

population of organisms gradually adapt over time to better survive and

reproduce in the conditions imposed by their surrounding environment.  In

natural evolution members of a population vary in form, function, and

behavior.   Much of this variation is heritable from one generation to the next.

Some forms of heritable traits are more adaptive to the environment than
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others; that is they improve chances of surviving and reproducing.  As s

result, those traits become more common in the population and thus the

population becomes better adapted to the environment.

Natural evolution can also be viewed as an optimization problem

where the objective is to find a set of traits that maximize the chances of an

organism to survive and reproduce in the given environment.  This view of

natural evolution allows us to select the essential features of the evolutionary

process so that it can be artificially applied to any optimization problem.

In artificial evolution the members of the population represent possible

solutions to a particular optimization problem.  The problem itself represents

the environment.  We must apply each solution to the problem and assign it a

fitness value indicating its performance on the problem.  The two essential

features of natural evolution which we need to maintain are propagation of

more adaptive traits to future generations and the heritability of traits from

parent to offspring.  By applying a selective pressure which gives better

solutions a greater opportunity to reproduce we can satisfy the first criteria.

To satisfy the second criteria we need to ensure that the process of

reproduction preserves most of the traits of the parent solution and yet allows

for diversity so that new traits can be explored.

2.3  The Genetic Algorithm

The use of artificial evolution as a heuristic search algorithm for
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solving difficult problems has been explored since the mid 1960’s [Fogel,

1966].  Since then many approaches of implementing artificial evolution

have emerged with genetic algorithms being one of them.  This approach was

introduced by John Holland and his associates [Holland, 1975].

The primary feature of the genetic algorithm which distinguishes it

from other evolutionary algorithms is that it represents the specimen in the

population as bit strings.  This is analogues to the DNA strands used in nature

to encode the traits of real organisms.  The encoding allows the genetic

algorithm to use a set of genetic operators to manipulate the bit strings when

creating new specimen.  These operators are similar to the types of operations

that are naturally encountered by the DNA strands in real organisms during

reproduction.  The advantages of this approach lies in its generality

[Goldberg, 1989].  The bit string representation can be used to encode a wide

range of problems, not only those which can be represented as a set of

parameters.   Also the use of genetic operators to create new specimen allows

the search algorithm to be completely independent of how the specimen are

decoded and the problem to which they are applied.

In genetic algorithms each specimen in the population consists of a

fixed length bit string.  This is called the genotypic representation of the

specimen.  To represent a possible solution to a parameter optimization

problem as a bit string we simply need to limit the resolution of each

parameter to a finite number of bits and concatenate the binary encoded
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parameters to form the bit string.  Before the specimen can be evaluated we

need to decode the bit string to get back a set of parameters.  This decoded

version is called the phenotypic representation of the specimen.

The genetic algorithm starts with an initial population of randomly

created bit strings.  These initial specimen are decoded and applied to the

problem.  The result of the specimens performance on the problem is

represented by a value referred to as the fitness of the specimen.  A new

generation of specimen are created from the current population by applying

genetic operators.  Not all specimen in the current population are selected

equally to be parents of future generations.  Rather specimen with better

fitness values are selected as parents more often.  This ensures that the more

adaptive traits have a higher probability of being propagated to future

generations.  Once the new generation of specimen are created they are

evaluated to determine their fitness.  The current population is replaced by

the new specimens which can now serve as parents in creating the next

generation of specimen.  The algorithm proceeds as such creating one

generation after another until the average fitness of the population or the

fitness of the best specimen in the population reaches a desired fitness.

2.4  Genetic Operators

There are two basic genetic operators used to create new specimen

from current ones.  The first is called mutation.  It simply involves making a
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copy of the parent specimen and randomly toggling some of the bits.  The

probability of toggling each bit is determined by a constant called the

mutation rate.  The other genetic operator is called crossover.  Crossover

basically consists of combining the bit strings of two specimens to create a

child with a new bit string.  There are various ways of implementing the

crossover operator.  A commonly used form of crossover called 1-point

crossover cuts each of the parent bit string into two substrings.  Both parent

strings are cut at the same randomly chosen location and the substrings after

this location are swapped to create two new specimen.  In the example below

the parents are cut after bit location 4 and swapped to create the child

specimens.

1-Point Crossover

Parent 1: XXXXXXX                  Child 1: XXXXYYY

Parent 2: YYYYYYY                  Child 2: YYYYXXX

Another form of crossover is called uniform crossover.  This method

creates a child specimen by using a probability of 50% that any given bit in

the child will come from the first parent (otherwise the bit comes from the

second parent).  A variation of this method called the parameterized uniform

crossover allows a parameter to control the probability of any given bit in the

child coming from the first parent.  Setting this parameter to 1 results in the
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child being identical to the first parent and setting it to 0 results in the child

being identical to the second parent.  The parameter can be set to any value in

between to get the desired mix of parents.  In the work described in this thesis

the parameterized uniform crossover operator was used.  This form of

crossover was chosen because of its less disruptive and greater exploratory

features [Spears and De Jong, 1990].

In genetic algorithms the crossover operator is the primary method for

exploiting the diversity of the current population to find which bit

combinations lead to better fitness.  Thus, each new specimen is created using

crossover.  The drawback is that the crossover operator tends to decrease the

diversity of the population rather quickly and leads to a population in which

all the specimen are identical at which point the crossover operator is no

longer able to produce new specimen.  Likewise, if a particular bit in all the

specimens had the same value there would be no way to create a specimen

that had a different value for this bit if only crossover was used.  In order to

escape from such situations and keep the population diverse the mutation

operator must be used.  Thus, after a new specimen is created using crossover

the mutation operator is applied.  However, mutation has the negative effect

of disrupting the good bit combinations (or schemas) already found.  In order

to minimize this disruptive effect the mutation rate is usually set to a very

small number such as 0.001.  The population size plays an interacting role

with mutation.  As the size of the population gets smaller the probability that
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a particular bit in all the specimen will be stuck at the same value increases.

Thus, smaller populations require a relatively larger mutation rate to keep the

population diverse.

2.5  Selective Pressure

The ability of the genetic algorithm to produce progressively better

specimen lies in the selective pressure it applies to the population.  The

selective pressure can be applied in two way.  One way is to create more child

specimen then are maintained in the population and select only the best ones

for the next generation.  Even if the parents were picked randomly this

method would still continue to produce progressively better specimen due to

the selective pressure being applied on the child specimen.  The other way to

apply selective pressure is to chose better parents when creating the

offsprings.  With this method only as many child specimen as maintained in

the population need to be created for the next generation.  Even when

selective pressure is not applied to the offsprings this method will continue to

produce progressively better specimen, due solely to the selective pressure

being applied to the parents.

Although in natural evolution both types of selective pressure seem to

be at work, algorithms based on artificial evolution tend to favor the latter

method of applying selective pressure.  This is primarily due to the fact that

the evaluation of child specimens to determine their fitness is usually the
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most computationally intense part of the algorithm.  Thus, it is preferable to

be selective about which parents are allowed to breed so that only as many

specimen as maintained in the population are produced and evaluated.

One way to allow the better fit specimen in the population to reproduce

at a higher rate is to use a selection method based on the roulette wheel

selection technique.  Each specimen in the population is represented by a slot

in a roulette wheel with the size of the slot being proportional to the fitness of

the specimen.  Such a roulette wheel is spun to randomly select the parents

with a probability proportional to their fitness.

Another method called tournament selection can also be used to apply

selective pressure to the parents.  This method picks N random specimens

from the population and chooses from them the specimen with the best

fitness.  With this method one can chose the value of N to control the amount

of selective pressure.  If N is 1 then this method is equivalent to random

selection.  Increasing N causes the amount of selective pressure being applied

to also increase.

In our initial experiments the roulette wheel selection method was

used.  However, after later comparison of the two methods (see Chapter 4)

tournament selection was chosen for the remaining experiments.
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2.6  Population Size and Mutation Rate

As stated earlier the crossover operator is the primary source of the

genetic algorithm for creating new and unique child specimen.  However, the

ability of the crossover operator to produce unique specimen diminishes as

the diversity of the population decreases.  Thus, the ability to maintain the

diversity of the population using mutation is a critical issue in genetic

algorithms.  The population size and mutation rate are key factors that effect

the rate at which diversity decreases.  Selective pressure also contributes to

decreasing the diversity of the population.  However, even in the absence of

selective pressure there is a natural tendency for the diversity of the

population to decrease.  This phenomena is referred to in population genetics

as genetic drift.  Appendix A explores the relationship between population

size, mutation rate and selective pressure on a populations diversity and tries

to model these relationships analytically.

In most of the GA experiments described in this thesis we have chosen

to use a relatively small initial population size of 30 specimen (or 150

specimen when a mixed size population is used), since smaller populations

are generally able to converge to a solution more quickly.  We have chosen to

use a mutation rate of 0.01 for this population size.

2.7  Mixed Specimen Populations

Ultimately, we would like to use the GA to find not only the network
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parameters of a RNN, but also the network architecture.  However,  the

difficulty in doing this is that allowing the GA to modify the network

architecture requires the network architecture to be encoded by the bit strings

in such a way that the existing genetic operators can be used.  Otherwise,

special genetic operators just for manipulating the network architecture must

be introduced.  Also, since a variable architecture  means a variable number

of network parameters and consequently variable length bit strings, the

existing genetic operators would need to be modified to handle these variable

length bit strings.  Both approaches would require a major deviation from the

standard GA described thus far.

However, a third approach can be used which does not require any

changes to the GA other than a minor change to the parent selection method.

This approach simply starts with a population where the specimen are

networks of varying architectures and implements the parent selection

method so that only compatible specimen can be crossed.  The initial

population would contain an equal number of specimen that had a specific

number of nodes in the second layer.  The first parent is chosen from the

entire population using the a parent selection method such as the roulette

wheel.  The second parent is also chosen using the same parent selection

method.  However, it is chosen in such a way that it will have the same

number of nodes in the second layer as the first parent.  This can be

accomplished by either reselecting the second parent until a compatible one
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is found or by limiting the selection to only the subpopulation that is

compatible with the first parent.

This approach extends the selective pressure already being applied in

finding the network parameters so that it is also applied in selecting a network

architecture.  This method of parent selection introduces direct competition

between different sized networks for a presence in the population.  The

network size which is more quickly able to find better solutions than the

competition will eventually dominate the population.  Once the population is

dominated by a specific network architecture the parent selection method will

become equivalent to that used in a fixed size population.

This small change in the parent selection scheme will allow the

standard genetic algorithm and the bit string representation of the specimens

to be used while still allowing the network architecture to be selected by the

evolutionary process.
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Chapter 3

The XOR Problem

3.1  Introduction

To make an initial assessment of how well the standard genetic

algorithm performs on the task of finding recurrent neural networks to solve a

given problem we have chosen the 2-input XOR problem as a test case.  The

2-input XOR problem is defined as finding a network which produces an

output of 1 when the input is <0, 1> or <1, 0> and an output of 0 when the

input is <0, 0> or <1, 1>.

The XOR problem was chosen since it is a simple, yet nontrivial

problem for neural networks to solve.  Also, the XOR problem has been

extensively used as a benchmark for performance of neural network training

algorithms.  It should be noted that traditionally a recurrent neural network is

not used for problems such as the XOR problem, or more generally for

arbitrary input to output mapping problems.   A multilayer feedforward

network is sufficient to solve such problems [Hornik, Stinchcombe, and

White, 1989].

The problem of finding a recurrent neural network for solving the

XOR problem will be more difficult than finding a functionally equivalent
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multilayer feedforward network since we are searching in a larger space that

is a super set of the multilayer feedforward network space.  Also, most

recurrent networks will have outputs that change dynamically with time,

however our problem requires finding a recurrent network that not only

produces the appropriate output for the given input, but also maintains a

stable output that does not change with time.  Thus, we are interested in

investigating how such input/output mapping problems can be solved by a

recurrent neural network.  It will be interesting to see weather the networks

found will use recurrent connections even though they are not necessary for

this problem.

Finally, we are interested in using the evolutionary process to help

determine not only the network parameters, but also the number of hidden

nodes needed in the second layer.  In the last experiment described in this

chapter we evolve populations with mixed network sizes and compare the

results against experiments evolving fixed network size populations.

3.2  Network Fitness

The fitness of a particular network at solving the XOR problem was

determined by applying each of the four possible inputs and measuring the

difference between the desired and actual output of the network.  However,

since the nodes in the second layer have an internal state, the state of the

network when the input was applied will also effect the output of the
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network.  To ensure that the evolved network is capable of converging to the

correct output independent of the state it is in, steps must be taken during the

evaluation to ensure that the network was not in the same state whenever a

particular input was applied.  Before evaluating the network for a particular

input pattern, the state of the network is initialized randomly such that the

internal state variable of each node is in the range [-2, 2].  This range is

chosen based on the saturation limits of the activation function (-2 to 2) being

used, so that the initial state of the network will span the full saturation range.

Also on some trials the next input pattern is applied without changing the

state of the network, so that it starts at the state it converged to for the

previous input.  This requires the order in which the input patterns are

presented to be shuffled so that the same pattern is not consistently presented

after any other pattern.  A probability of 50% is used to decide whether to

initialize the state of the network randomly or to keep it in the same state

before presenting the next pattern.

Due to the recurrent nature of the neural network used, a certain

amount of time must be allowed for the output of the network to settle

whenever a new input is applied.  Also, since we want the evolved network to

converge and maintain a static output, we must measure the output over a

period of time rather than just one instance.  Otherwise, it would be possible

to evolve seemingly good networks that achieve the desired value at just the

measured time and then change the outputs after being measured.  For the
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experiments discussed later a measuring time of 2 time units (or 40

simulation steps with dt = 0.05) was used after allowing 2 time units for the

network to settle.  During the measuring time the following equation was

used to determine the fitness of the network for the given input pattern.

The squared difference between the desired output and the actual

output is used as the metric for measuring the networks fitness.  However,

since we want a larger fitness value to mean a better specimen (network), we

subtract the squared difference from 1.  This value is summed over all the

output nodes ( , which in this case is 1) and repeated for a duration of

simulation steps.  The result is averaged to give a fitness value between 0 and

1 for the applied pattern.  The total fitness for the network is computed by

performing the above calculation for each pattern in the set and the set of

patterns may be applied several times.  The following equation is used to

measure the total fitness of the network.

The total fitness is the average of the fitness calculated by applying the

set of patterns ( ) to the network  times.  It should be noted that the total

fitness calculated has some noise in it due to he fact that some stochastic

fitness p( ) 1
MN

1 dn p( ) on t m∆t+( )−( ) 2−
n

N

∑
m

M

∑=

N M

fitness
1

RP
fitness p( )

p

P

∑
r

R

∑=

P R



27

decisions were made in the process of calculating the fitness for each pattern

(such as the random initial state from which to start the network).  Thus, the

total fitness for the same network will differ from one evaluation to the next.

The variance of the total fitness can be reduced by increasing the number of

times ( ) the set of patterns are applied to the network.

Because of the way the fitness function is defined it will produce

values that are better then the specimens actual performance.  For example

the fitness of a specimen that on average produces an output that is 50% of

the desired output will have a fitness of 1 - (0.5)2 which is 0.75.  Likewise, a

specimen that has a fitness of 0.99 is really producing an average output that

is 90% of the desired output, since 1 - (0.9)2 = 0.99.  This should be

considered when choosing the desired level of fitness we want the networks

to reach.

3.3  Experiments and Results

The first set of experiments were performed to measure the amount of

noise in the fitness function and to get a better understanding of how much

the noise was reduced by increasing the number of times the set of input

patterns were applied to the network.  A specimen with 3 nodes in the second

layer was evaluated 20 times by presenting the pattern set only once on each

evaluation.  The standard deviation in the fitness for the 20 evaluations was

computed.  The number of times the pattern set is presented was increased to

R
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2 and the same specimen is evaluated 20 more times and the standard

deviation in fitness computed.  This procedure is repeated up to 10

presentations of the pattern set on each evaluation.  This procedure was

repeated for 10 specimens and the resulting standard deviation curves

averaged to produce the final result shown below.

Figure 3:  The amount of deviation in the fitness due to noise decreases as
the number of times the pattern set is applied increases.

From this result it is apparent that not much reduction in the standard

deviation is gained after about 5 presentations of the pattern set.  Since

increasing the number of times the pattern set is applied directly increases the

computation time for fitness evaluation it is desirable to keep it as low as

possible.  In all subsequent experiments the input pattern set was presented 5

times in determining the specimen’s fitness.
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The next set of experiments were used to determine what value to use

for the parameterized uniform crossover operator.  Networks having 2 nodes

in the second layer were evolved to solve the XOR problem.  The table below

shows the average number of generations that were required to evolve a

network for the various values of the uniform crossover parameter.  The

average was taken by running each parameter value 5 times.  Only the trials

in which the genetic algorithm converged to a solution were used in

competing the average.  A solution was considered to have been found when

the fitness of the best specimen exceeded 0.99.  Although this may seem to be

an overly strict criteria it really corresponds to the average network output

being 90% of the desired output because of the way we have defined the

fitness measure.  If a solution was not found within 500 generations the

search was terminated and the genetic algorithm is considered not to have

converged to a solution.

The number of specimens in the population on all runs was 30.  The

mutation rate was fixed at 0.01.  The networks were given 2 time units to

settle and were then measured for 2 time units.  The parameter for uniform

crossover was varied between 0.7, 0.8 and 0.9.  The selected parents were

ordered based on fitness (so that the parent with higher fitness was the first

parent) before applying the crossover operator.  Thus, the bias due to the

crossover parameter was always in favor of the better fit parent.  From the

results of these experiments a value of 0.8 was chosen for the parameterized
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uniform crossover operator for all subsequent experiments.

Table 1: Effects of uniform crossover bias on the performance of the GA.

In the next set of experiments recurrent neural networks of varying

number of nodes in the second layer were evolved to solve the XOR problem.

Networks having 2, 3, 4, and 5 nodes in the second layer were evolved

(although only one node is used for output; the rest are hidden nodes).  The

table below shows the average number of generations that were required to

evolve a network for each of the various number of nodes in the second layer.

The average was taken by running each network size 50 times.  Only the

trials in which the genetic algorithm converged to a solution were used in

computing the average.  The criteria for stopping and the parameters for the

genetic algorithm were the same as in the previous set of experiments.

Parameter for
uniform crossover

Convergence ratio
Average number of

generations

0.7 4:5 352

0.8 3:5 134

0.9 3:5 172
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Table 2: Performance of the GA for various number of nodes in the second layer.

Although solutions can be found for networks with only two neurons

in the second layer, these networks tend to get stuck in local minimums quite

easily and only find solutions about 60% of the time.  Using a larger

population size, or a slightly larger mutation rate should help improve this

ratio.  However, even with a relatively small population the other network

sizes are able to find solutions about 90% of the time.

It is interesting to note that when a RNN is used, it is possible to find

solutions for the XOR problem with networks that have only one hidden node

(two nodes in the second layer).  Feedforward networks require at least two

hidden nodes to be able to solve the XOR problem.

In comparing the average number of generations needed for finding a

solution, it should be noted that the number of network parameters that need

to be determined increases as the square of the number of nodes in the second

layer. The total number of free parameters for networks with 2, 3, 4 and 5

nodes in the second layer are 12, 21, 32 and 45 respectively.  From the

experimental data it appears that the number of generations needed to find a

Number of nodes in
second layer

Convergence ratio
Average number of

generations

2 30:50 156

3 35:50 176

4 47:50 194

5 46:50 229
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solution does not seem to be increasing quadratically with increases in the

network size.  Rather the rate of increase seems to be linearly proportional to

the number of nodes in the network.

The following figure shows a typical path towards a solution as the

genetic algorithm tries to find a network with 3 nodes in the output layer to

solve the XOR problem.

Figure 4:  The rate of increase in fitness of the best specimen and the aver-
age of the population for a typical run.

The solid line shows the fitness of the best specimen and the doted line

shows the average fitness of the population.  From this graph it is apparent

that specimens which are much more fit then the average specimen appear

through out the search, but are lost just as quickly, since the parent specimens

are discarded once the child specimens are created.  However, through out the

run there is a gradual tendency for both the average fitness and the fitness of
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the best specimen to improve.

By examining the interconnection weights of the nodes in the second

layer it was found that in all observed cases the networks found used

recurrent connections and even self feedback connections.  This was true

regardless of the number of nodes in the second layer.  The solutions found

by the GA are not at all the architectural equivalent of feedforward networks.

It seems that given the ability to use recurrent and feedback connections it is

easier for the GA to find solutions that make use of these connections than

solutions which do not use them.

In the final set of experiments the genetic algorithm was used to find

not only the network parameters, but also the number of neurons to use in the

network.  In these experiments the specimen in the population had a varying

number of nodes in the second layer.  The number of nodes in the second

layer were limited to between 1 and 5.  A population size of 150 specimens

with 30 specimens for each of the different second layer size was used.

Specimen with different number of neurons in the second layer require

different number of parameters to encode them and thus have bit strings of

different lengths.  Since the crossover operator requires the two parents to

have bit strings that are of the same length, the two parents selected must

have the same number of neurons in the second layer.  The experiments were

run exactly like the pervious set of experiments, except that the method for

selecting the second parent was slightly different.  If the second parent
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selected by the roulette wheel did not have the same number of neurons in the

second layer as the first parent then another attempt was made.  If a second

parent with a matching number of neurons in the second layer was not found

in 10 attempts, then the first parent was also used as the second parent.  The

following table shows the results of 100 trials of these experiments.

Table 3: Performance of the GA when a mixed size population is used.

It was found that in these experiments one of the five network types

would dominate the population and cause the other network types to go

extinct.  How often each of the five network sizes dominated the population

is shown in the second column of the table.  The network type which can

most readily improve its performance is most likely to dominate the

population.  Thus, the smaller sized (1-3 nodes) networks dominated the

population about 75% of the time as compared to the larger sized (4 and 5

nodes) networks.  However, the smaller sized networks are also more likely

to get trapped in a local minimum or may not even be able to solve the

problem at all.  Thus, the percent of time the smaller sized networks

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 8 0 NA

2 34 19 117

3 33 33 127

4 14 14 118

5 11 11 127



35

converged is about 70% compared to 100% for the larger sized networks.

The competition between networks of different sizes causes the

average number of generations to find a solution to be significantly less than

what it would be if the different sized networks are evolved independently.

Table 2 suggests that if we evolved in parallel 5 independent groups of

networks with each group having a different number of nodes in the second

layer we can at best expect to find solutions in about 156 generations on

average.  But using a mixed size population with the same total number of

specimen allows us to find solutions in about 120 generations on average as

suggested by Table 3.  Also, using a mixed size population seems to improve

the convergence ratio (the number of trials in which a solution is found)

particularly for the larger (3-5 nodes in second layer) networks.  When fixed

network size populations are evolved independently the convergence ratio is

about 92% when there are 3-5 nodes in the second layer, whereas for a mixed

network size population the same convergence ratio is 100%.  Thus, evolving

with a mixed size population seems to improve both the speed of

convergence to a solution and also the convergence ratio.

3.4  Discussion of Results

The experiments described in the previous section demonstrate that the

genetic algorithm can be applied to finding the network parameters and

architecture for recurrent neural networks.  In fact the GA was able to
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discover RNNs that require only one hidden node to solve the XOR problem.

Feedforward networks require at least two hidden nodes in order to solve this

problem.

When different sized networks were evolved independently with even

a relatively small populations sizes of 30 specimen the GA was able to find

solutions in an average of about 188 generations.  The convergence rate was

about 60% for the smaller sized networks (2, or 3 nodes in the second layer)

and about 90% for the larger sized networks (4, or 5 nodes in the second

layer).

In all of the observed solutions it was noticed that the solutions found

by the GA used recurrent and even self feedback connections.  This was true

regardless of the number of nodes in the second layer.  Since a feedforward

network can solve the XOR problem it was not necessary for the solutions to

have recurrent and self feedback connections.  The fact that the solutions

found by the GA are not at all architecturally equivalent to feedforward

networks suggests that it is easier for the GA to find solutions that use

recurrent and feedback connections than solutions which do not use them.

When mixed size populations were evolved with the initial population

containing 30 networks of sizes 1 to 5 in the second layer, the GA was able to

find solutions in an average of about 125 generations.  Also the convergence

rate improved to about 69% for the smaller sized networks (1, 2, or 3 nodes in
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the second layer) and to 100% for the larger sized networks.  This

improvement can be attributed to the competition between the different sized

networks for a greater presence in the population.
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Chapter 4

Enhancing the Genetic Algorithm

4.1  Introduction

The genetic algorithm has many parameters that can be experimented

with to possibly improve the performance of the algorithm.  The most

obvious are parameters such as the mutation rate and population size.  In

addition the GA uses various methods that can be altered.  Some of these

include the method to use for encoding the bit strings, method of

implementing the crossover operator, and method for selecting parents.

The number of parameters and methods that can be modified in a GA

is large enough that it is virtually impossible to do an exhaustive search for

the best combination.  However, even if we were to find a good set of GA

parameters and methods we would still be left with the question of whether

these are applicable in general or are just specific to the problem to which the

GA was applied.  For example, a parameter which caused the algorithm to be

very greedy could very likely improve the performance of the GA when it is

applied to a problem that does not have many local minimums in its search

space.  However, this same parameter would tend to produce worse results if

the GA is applied to a problem with a search space cluttered with local

miniums.  Thus, the problem of finding truly good GA parameters is made
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more difficult because we must discern between general improvements in

performance and improvements that are specific to the particular problem.

Fortunately, in our case we are not as much concerned about weather

the parameters and methods improves performance in general as long as it

shows a significant improvement for our particular problem of finding RNN

parameters.  Our results of testing certain parameter changes will only serve

as single data points in the more general search for good GA parameters.

In this chapter we explore three possible methods of improving the

performance of the standard genetic algorithm.  Three experiments will be

performed, with each experiment testing if a particular change will improve

the performance of the best GA found so far.  In the first experiment we

compare alternative methods of encoding the bit strings.  We compare the

commonly used binary encoding against gray scale encoding to determine if

one is more preferable than the other (at least for our particular problem).  In

the second experiment we try an alternative method of selecting parents

known as tournament selection and try to determine if it produces better

results than the commonly used roulette wheel method.  In the third

experiment we try an alternative method for the progression of the GA.

Generational progression in which one generation of specimen is completely

replaced by the next is the most commonly used method.  We compare this

with a method referred to as steady state progression in which only one

specimen in the population is replaced by a newly created one.  Thus, there is
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no sudden turnover in the entire population, but rather a slow and gradual

replacement.  As each experiment is performed the best GA found as a result

of that experiment will be used in the next experiment.

All three of these methods have been chosen based on current research

going on in improving the performance of GAs.  Also, all three of these

methods have been used on other problems and have been found to improve

the performance of the GA.  Thus, we expect these changes to improve the

performance of the GA for our particular problem of finding parameters for a

RNN.

In the final experiment we use the best GA found to evolve a mixed

size population and make a comparison of the results with the similar

experiment performed using the standard GA.

4.2  Gray Scale Encoding

4.2.1  Introduction

One of the problems with binary encoding is that in some cases a large

step must be taken in genospace in order to make a small move in

phenospace.  For example consider the bit string, 00111111; the 8-bit binary

encoded representation of the decimal number 63.  In order to change this to

64, the next higher point in phenospace, we must toggle the value of seven

bits to produce 01000000.  This is a significantly large move in genospace.  It
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is highly unlikely that this change can be produced in one step by either the

crossover or mutation operators.

Gray scale encoding has the property that in all cases to move to the

next closest point in phenospace we only need to toggle one bit; the smallest

possible move in genospace.  This move could easily be made by the

mutation operator.  Thus, it is possible that this “smother” mapping between

genospace and phenospace will allow the GA to converge to a solution faster

and more often.

4.2.2  Experiment

The experiment to test gray scale encoding consisted of 50 trials of

generating RNNs for each of the 4 network sizes (2, 3, 4, and 5 nodes in the

second layer).  The RNNs were again applied to the XOR problem as in

Chapter 3.  The setup for the GA was identical to that used in the third

experiment described in Chapter 3 when fixed size networks were evolved,

with the only difference being the use of gray scale encoding rather than

binary.  A population size of 30 specimen were used.  The mutation rate was

set to 0.01 and uniform crossover bias was 0.8 towards the parent with higher

fitness. The results of this experiment can be compared directly with the

results shown in Table 2 to determine which representation is better.
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4.2.3  Results

The following table summerizes the results of the 50 trials for each of

the 4 network sizes.

Table 4: Performance of the GA when gray scale encoding is used.

In comparing these results with those of Table 2, the most noticeable

improvement produced by gray scale encoding seems to be a significantly

higher convergence ratio for the smaller sized networks.  It seems that the

gray scale encoding does indeed cause the search space to appear to be

smoother to the GA so that it is less likely for a parameter to get stuck due to

a large move being required in genospace in order to make further progress.

The effects of gray scale encoding appear to be more prominent in smaller

sized networks because these networks have fewer parameters to adjust and if

one gets stuck the GA may not be able to converge; whereas larger networks

that have more parameters can adjust other parameters to compensate for the

stuck parameter and thus can find a solution more often.

However, the number of generations needed to find a solution seems to

Number of nodes in
second layer

Convergence ratio
Average number of

generations

2 48:50 182.2

3 50:50 182.0

4 47:50 189.8

5 47:50 230.2
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have increased for the smaller sized networks.  It should be noted that only

the trials in which the GA converged to a solution are used in computing the

average number of generations needed to find the solution.  When binary

encoding was used the trials which got stuck and did not find a solution were

not included in the average.  Only those trials which did not get stuck and

were able to quickly find a solution were included.  With gray scale encoding

more trials are finding a solution because the parameters are not getting stuck

and can eventually creep to the required value.  Thus, trials which are taking

longer, but never the less finding solutions are being included in the average

and causing the average to be higher.

The results for both convergence ratio and speed seem to be about the

same for the larger sized networks (4 and 5 nodes in second layer).  This is

due to the larger sized networks being less prone to getting stuck.  The larger

sized networks have more parameters that can be adjusted and if a particular

parameter gets stuck other parameters can compensate for it.

Although gray scale encoding does not seem to indicate any

substantial increase in how quickly the GA finds a solution, the significant

increase in how often it is able to find a solution clearly indicates that gray

scale encoding is preferable to binary encoding.  In all subsequent

experiments gray scale encoding will be used.
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4.3  Tournament Selection

4.3.1  Introduction

Although the roulette wheel based parent selection method does

guarantee that specimen with higher fitness are given greater opportunity to

reproduce, it suffers from the fact that the opportunity it provides the

specimen to reproduce is directly proportional to the fitness of that specimen

relative to the average fitness of the population.  Thus, in situations where the

fitness of all the specimen is about the same with small deviations, the

roulette wheel based selection method becomes almost equivalent to random

selection.  A rank based selection method such as tournament selection does

not suffer from such situations.  A rank based selection method also

guarantees that specimen with higher fitness are given greater opportunity to

reproduce.  However, the amount of opportunity the specimen is given is

determined only by the specimens rank and is independent of the specimens

fitness relative to the average fitness of the population.  It is expected that

such a selection method will tend to be more greedy and can possibly find

solutions more quickly at the expense of being more prone to getting stuck in

local minima.  The amount of greediness can be controlled by setting the

tournament size.  The larger the tournament size the more greedy the

selection method.
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4.3.2  Experiment

The experiment to test tournament selection consisted of 50 trials of

generating RNNs for each of the 4 network sizes (2, 3, 4, and 5 nodes in the

second layer).  The RNNs were again applied to the XOR problem as in the

previous experiment.  The setup for the GA was identical to that used in the

previous experiment.  In fact the same algorithm (with gray scale encoding)

was used with changes only to the selection method.  The parent selection

method was changed from roulette wheel to tournament selection with a

tournament size of 2.  That is, 2 specimen were selected randomly from the

population.  Each selection was independent of the other, so it was possible

for both participants of the tournament to be the same specimen.  The winner

of the tournament was the specimen with the better fitness score.  In case of a

tie the specimen that was selected into the tournament earlier was chosen.

The selection of the second parent was independent of the first.  Thus, it is

possible for both parents to be the same specimen.  The results of this

experiment can be compared directly with the results of the previous

experiment shown in Table 4.

4.3.3  Results

The following table summerizes the results of the 50 trials for each of

the 4 network sizes.
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Table 5: Performance of the GA when tournament selection is used.

Comparing the results of this experiment with the previous experiment

shows a substantial improvement in the average number of generations

needed to find a solution.  Using tournament selection has reduced the

average number of generations in which a solution is found by more then

50% for all network sizes.  This gain is achieved with only a small decrease

in the convergence ratio for the smaller sized networks (2 and 3 nodes in

second layer) and almost no significant loss for the larger sized networks (4

and 5 nodes in second layer).

A surprising result is that the average number of generations actually

decreased as the network size got larger.  In the previous experiments there

was usually an increase with increasing network size.  This result suggests

that it’s probably more easier for the larger sized networks to find a solution

than originally thought.

It seems that at least for this problem the roulette wheel selection

method is not making good use of the small differences in fitness between

specimen and that the tournament selection method is much more preferable.

Number of nodes in
second layer

Convergence ratio
Average number of

generations

2 44:50 85.2

3 49:50 61.6

4 49:50 57.7

5 47:50 53.5
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In all subsequent experiments the tournament selection method will be used.

4.4  Steady State progression

4.4.1  Introduction

Genetic Algorithms typically use generational progression in which a

new generation of specimen are created from the current generation of

specimen and the current population is completely replaced by the new

population.  However, it is not necessary that specimen from the current

population be replaced only after an equal number of specimen to replace

them are created.  The replacement can be done whenever a certain number

of specimen have been created.  In steady state progression a specimen from

the current population is replaced as soon as another specimen is created.

The specimen replacement policy can be used to apply additional selective

pressure.  The higher level of iteration introduced by using steady state

progression tend to make earlier use of better specimen and thus, allows a

solution to be found more quickly.  However, steady state progression will

tend to be more greedy then generational progression and will improve

performance only at the expense of being more prone of getting trapped in

local minima.

4.4.2  Experiment

The experiment to test steady state progression consisted of 50 trials of

generating RNNs for each of the 4 network sizes (2, 3, 4, and 5 nodes in the
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second layer).  The RNNs were again applied to the XOR problem as in the

previous experiments.  The setup for the GA was also identical to that used in

the previous experiments.  The algorithm used in this test was the algorithm

from the previous test (incorporating gray scale encoding and tournament

selection) modified to use steady state progression instead of generational.

Thus, one of the specimen in the population is replaced as soon as a new

specimen is created.  A tournament selection replacement policy is used.

Two specimen from the current population are randomly selected to be

participants in the tournament.  The two selections are independent so that it

is possible for both participants to be the same specimen.  The winner is

selected to be the specimen with the worse fitness score.  In case of a tie the

specimen that was selected into the tournament first is the winner.  The

winner is replaced by the newly created specimen, even if the winner has a

better fitness value than the specimen replacing it.  The results of this

experiment can be compared directly with the results of the previous

experiments to determine if steady state progression is beneficial.

4.4.3  Results

The following table summerizes the results of the 50 trials for each of

the 4 network sizes.
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Table 6: Performance of the GA when steady state progression is used.

With steady state progression there is no clear notion of generations, so

we can only measure the total number of specimen evaluations that were

performed in reaching a solution.  However, by dividing the number of

evaluations by the population size we can find an equivalent measure of

generations that can be compared with previous experiments.  Thus, the

values in the column labeled average number of generations were produced

by dividing the average number of evaluations required on trials that

converged by the population size of 30 specimens.

Comparing the results of this experiment with the previous experiment

shows a clear improvement in the average number of generations needed to

find a solution for all network sizes.  Using steady state progression has

reduced the number of generations needed to find a solution by at least 20%.

Surprisingly this gain in performance does not seem to impact the

convergence ratio.  Thus, solutions were found as often as in the previous

experiment.

Unlike the previous experiment in which there was a continuous

Number of nodes in
second layer

Convergence ratio
Average number of

generations

2 43:50 67.2

3 50:50 41.8

4 49:50 36.1

5 47:50 42.7
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decrease in the average number of generations to find a solution with

increasing network size, this experiment shows a decrease only until a

network size of 4 nodes in the second layer.  When 5 nodes are used in the

second layer the number of generations required to find a solution increases.

This could just be caused by a statistical sampling error.  However, another

possibility is that a maximum amount of selective pressure is being applied

so that we are now seeing the expected minimum in the network size versus

generations curve.  This minimum is expected because for small network

sizes, it may not even be possible to solve the problem with the number of

free parameters, or there may only be a few possible solutions.  Thus,

resulting in a relatively larger number of generations needed to find solutions.

For large networks just the greater number of free parameters that must be

found makes the problem more difficult.  Thus, one would expect there to be

a network size that is best suited for solving the problem.  The results of this

experiment suggest that for the XOR problem the best network size is one

that has 4 nodes in the second layer.  It will be interesting to see if this holds

true in the mixed size population experiment.

The significant gain in convergence speed without any decrease in the

convergence ratio suggest that at least for this problem, steady state

progression is superior to generational progression.  Thus, in all subsequent

experiments steady state progression will be used.
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4.5  Mixed Size Population

4.5.1  Introduction

The fourth experiment discussed in Chapter 3 used a mixed size

population to evolve not just the network parameters, but also the network

architecture.  The results of that experiment suggested that using a mixed size

population improved the convergence ratio as well as the convergence speed.

We would like to repeat this experiment using the enhanced version of the

GA which incorporates gray scale encoding, tournament selection, and

steady state progression.  It will be interesting to see if using a mixed size

population will improve the convergence ratio and convergence speed as

suggested by the earlier mixed size population experiment.  Also this

experiment will serve as a test to confirm the results of the previous

experiment which suggests that a network size with 4 nodes in the second

layer should most often dominate the population.

4.5.2  Experiment

The mixed size population experiment consisted of 100 trials of

generating RNNs for solving the XOR problem.  A population size of 150

specimens was used with the initial population having an equal number (30

networks of each size) of networks with 1 to 5 nodes in the second layer.  The

setup for the GA was identical to that used in the fourth experiment of

Chapter 3.  However, the algorithm itself differed because it incorporated the
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three enhancements discussed in this Chapter.    Also the parent selection

method was slightly modified to allow for a mixed size population.  The first

parent was selected using a 2 player tournament.  The second parent was also

selected using a 2 player tournament, however, if the size (number of nodes

in second layer) of the second parent was different than the first, another

tournament was held to select the second parent.  If after 10 tournaments a

second parent is not selected, the first parent was also chosen to be the second

parent.  The results of this experiment can be directly compared with the

results of the fourth experiment of Chapter 3 (table 3).

4.5.3  Results

The following table summerizes the results of the 100 trials and shows

for each of the 5 network sizes, how often it dominated the population, how

often it converged to a solution when it dominated, and the average number

of generations it required to find a solution.
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Table 7: Performance of the enhanced GA when a mixed size population is used

Since the GA used steady state progression it was not possible to

directly measure the number of generations needed in finding a solution.

Instead the total number of specimen evaluations were measured and divided

by the population size (in this case 150) to compute the equivalent number of

generations.  These values were used in computing the average number of

generations for each of the network sizes.

These results show that using a mixed size population improved the

convergence ratio for all network sizes.  Whenever a particular network size

dominated the population it was also able to converge to a solution.  This

maybe be due in part to a larger effective population size in the latter

generations for the dominating network size.  But the competition between

network sizes also helps to weed out any network sizes that have gotten stuck

in a local minimum.  It is interesting to note that when the enhanced GA was

used networks with 1 node in the second layer never dominated the

population.  This is probably due to the use of gray scale encoding in the

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 0 0 NA

2 15 15 18.1

3 21 21 16.2

4 37 37 13.1

5 27 27 24.9
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enhanced GA which is allowing the other sized networks to find solutions

more often.

The number of generations needed to find a solution is drastically

reduced when using a mixed size population.  This is due in part to

interactions occurring only between smaller subpopulations of the larger

population.  Since the networks can only be crossed with others having the

same size, the effective population size tends to be much smaller then the

total population size of 150 specimens, particularly in the earlier generations.

Thus, the total number of evaluations needed in finding a solution is only

about twice as much as when a 30 specimen fixed size population is used.

However, dividing this by the total population size of 150 causes the number

of generations to be considerably less compared to the fixed size population.

The average number of generations for a network size of 5 is

significantly larger then the other network sizes.  This was found to be due to

one trial which took over 45,000 evaluations compared to most other trials

which took less then 3,000 evaluations.  Since the termination criteria was

still 150 generations or equivalently 75,000 evaluations this trial was not

terminated earlier and treated as one that did not converge to a solution.

Recomputing the average without including this trial gives a much more

reasonable value of 14.1 as the average number of generations needed to find

a solution for networks with 5 nodes in the second layer.
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In comparing the results of this experiment with the results of the

similar  mixed size population experiment using the standard GA (table 3), it

is clear that the combination of the enhancements made to the standard GA in

this chapter have significantly improved its performance.  Comparing table 7

with table 3 shows that the convergence rate has improved from about 120

generation to just approximately 18 generations; almost an order of

magnitude less.  Also the convergence ratio has improved from about 77% to

100%.

As expected from the results of the previous experiment, networks

with 4 nodes in the second layer dominated most of the trials.  Also the

average number of generations needed to find a solution shows a minimum at

a network size of 4.  These results confirm that for the XOR problem

networks with 4 nodes in the second layer are best suited to solve the

problem.

4.6  Conclusion

Three experiments were performed in this Chapter to determine if

certain modifications to the GA used in the previous Chapter would improve

its performance.  The experiments tested gray scale encoding, tournament

selection and steady state progression.  As each experiment was performed

the best GA found as a result of that experiment was used in the next

experiment.
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From the results of these experiments it was found that gray scale

encoding increases the convergence ratio (i.e. the number of times the GA

converges to a solution), especially for the smaller sized networks.  However,

gray scale encoding does not seem to improve the speed of convergence  (i.e.

the total number of generations required by the GA to find a solution).  Using

tournament selection as opposed to roulette wheel selection significantly

increases the performance of the GA by reducing the number of generations

needed to reach a solution.  This increase in performance is gained with only

a small decrease in the convergence ratio.  Using steady state progression

also helps to improve the speed of convergence, but Surprisingly does not

seem to effect the convergence ratio.  The best GA found as a result of these

three experiments was significantly better than the original GA used in

Chapter 3.

A final experiment was performed using a version of this enhanced

GA, modified to al low mixed size populations, to test i f  further

improvements could be gained by using a mixed size population rather than a

fixed size population.  The results showed improvements in both the speed of

convergence and the convergence ratio.  This experiment also showed that

networks with 4 nodes in the second layer are best suited for solving the XOR

problem.

The amount of improvement between the original GA and the

enhanced GA being almost an order of magnitude better suggests that at least
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the combination of these enhancements have produced a GA that is in general

better than the original.  Thus, the enhanced GA found as a result of these

experiments will be used in all subsequent experiments.
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Chapter 5

Learning Finite State Machines

5.1  Introduction

Thus, far we have only applied RNNs to the XOR problem.  Although

this problem is nontrivial, it can be solved by networks that use only a

feedforward architecture and does not require a RNN.  This is because the

output of the network  depends only on the current inputs being applied.  If a

problem required the outputs to depend not only on the current input, but also

on past inputs in such a way that the network had to maintain an internal

state, it could not be solved by a network using a simple feedforward

architecture.  A finite state machine requires such a behavior and thus, would

require a RNN to learn not only its input-output mapping, but also the

internal states it uses.

In this chapter we apply the best genetic algorithm found in the

previous chapter to the problem of learning a finite state machine (FSM) from

examples.  In this problem the neural network is presented with a sequence of

input patterns and the output of the network is checked after each pattern is

applied to determine how close it is to the desired output and thus, determine

the fitness of the network.  The same input pattern, however may require a

different output depending on what the previous inputs have been.
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Two particular FSMs will be used to evolve RNNs that can mimic

them.  The first FSM is one that is able to distinguish if a binary sting belongs

to the Tomita #4 grammar or not.  The Tomita #4 FSM starts out producing

an output of 1 and maintains that output until a sequence of three consecutive

0’s are seen on the input.  When the third 0 appears the output of the FSM

changes to a 0 and stays that way forever regardless of future input.  The

RNN needed to mimic this FSM would need only one input and output and at

least one or more hidden node.  The second FSM is one that determines the

parity of a bit string.  The parity FSM starts with an output of 0 and counts

the number of 1’s that have appeared on the input and produces an output of 0

if this number is even and 1 if it is odd.  The RNN required for this would

also require only one input, one output and at least one hidden node.  Both

problems require the resulting RNN to be able to maintain an internal state

and produce an output that is dependent on both this state and the current

input.

Figure 5:  A state diagram of the Tomita #4 FSM.  The number before the
colon is the input which causes that link to be followed and the number
after the colon is the output the state machine produces.

S1 S2

1:1

Start S3 S4
0:1 0:1 0:0

1:1

1:1
?:0
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Figure 6:  A state diagram of the Parity FSM.  The number before the
colon is the input which causes that link to be followed and the number
after the colon is the output the state machine produces

5.2  Network Structure and Fitness

Since both finite state machine problems used in this Chapter are

binary in nature we have chosen to use a discrete time RNN.  The network

architecture, the activation function and the range of the parameters are the

same as described in Chapter 1.

To determine the fitness of a particular network at simulating the given

FSM, 40 input sequences of length 10 are used to test the network.  The 40

sequences are picked randomly, but the same 40 sequences are used to test

each network.  Before presenting each sequence the network is initialized so

that the internal state of each node in the second layer is 0.0 and the output of

the nodes is computed from this state.  As each input pattern in the sequence

is applied to the network, the network is simulated for 2 iterations before its

output is checked.  The fitness of the network is measured after each pattern

in the input sequence is applied and the fitness values are averaged together

to find the networks fitness for the given sequence.  The procedure is repeated

for each of the 40 sequences to compute the networks fitness on each

S1 S2

1:1

1:0

0:0 0:1

Start
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sequence and the resulting values are averaged together to get the final fitness

of the network.  The following equation was used to compute the fitness:

 is the desired output on pattern  of sequence  and  is the actual

output.  is the number of sequences and  is the length or number of

patterns in each sequence.

Unlike the XOR problem in which all combinations of the input

patterns could be presented to the network, all combinations of input

sequences cannot in general be presented for the FSM problems.  Even when

the length of the sequence is limited to just 10 patterns with each pattern

being just one bit, there are 1024 sequences possible.  Thus, the 40 randomly

chosen sequences represent only a small fraction of the input space.

It is possible that the networks found using this inexhaustive fitness

function have learned to produce the appropriate output at the appropriate

time to mimic just the 40 sequences they were trained with and have not

really learned to simulate the behavior of the corresponding FSM.  Thus, the

resulting networks must be tested on a set of novel sequences to determine

what they have really learned.
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5.3  Experiments and Results for the Tomita #4 FSM

5.3.1  Initial Results

In the first experiment the DTRNN and fitness function described in

the previous section were applied to the Tomita #4 FSM problem.  100 trials

were performed using a mixed size population in which the number of nodes

in the second layer could range from 1 to 5.  The starting population in each

trial had 30 specimen from each of the possible network sizes.  Runs were

terminated if a specimen with a fitness greater than 0.99 was not found in 200

generations.  The following table shows the results of this experiment.

Table 8: Results of initial Tomita #4 FSM experiment.

The smaller sized networks (1-3 nodes in second layer) dominated the

population most often in these trials, but were not even able to find solutions

25% of the time.  The larger sized networks (4-5 nodes in second layer)

found solutions almost every time they dominated the population.  Also the

larger sized networks took significantly fewer generations to find solutions.

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 23 0 NA

2 19 2 126.1

3 24 10 74.8

4 16 14 57.8

5 18 18 46.6
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A few of the evolved networks were tested with novel input sequences

to determine if they had really learned the FSM or just the 40 sequences on

which they were trained.  The networks were tested on 1400 sequences of

length 100 and on 140 sequences of length 1000.  Every network tested

produced a fitness greater then 0.99 on both tests.  Even though the networks

were trained on 40 sequences of length 10, they were able to learn the

underlying FSM.  Surprisingly even some networks with only 2 nodes in the

second layer were able to learn the Tomita #4 FSM.  When the actual output

of the networks were observed it was found that sometimes the network

produced values like 0.7 or 0.3 when it should have been producing an output

of 1 or 0 respectively.  This occurred more frequently for networks with

fewer nodes in the second layer.  However, in all cases just rounding the

number to the closest integer resulted in the desired output.

The fact that the networks are able to produce the correct output on

sequences that are much longer then those on which they were trained is an

indication that the networks are forming very stable internal states.  Using an

activation function that has hard limiting saturation points seems to be the

critical element in allowing networks to form such stable internal states.  If a

sigmoid activation function had been used the internal states formed by the

networks would not have been stable and the network would not have

produced the correct output on sequences that were much longer than the

training sequences [Zeng, Goodman and Smyth, 1993].  This is one example



64

in which a linear hard limiting activation function is preferable to the

commonly used sigmoid activation function.  The GA is well suited to handle

such activation functions since it does not make use of any gradient

information and thus, does not require the activation function to be

continuous or differentiable.

5.3.2  Complementary Clock Inputs

When FSMs are implemented in hardware, some form of a clock

signal is used to drive the FSM.  The clock signal synchronizes the

components in the FSM so that the clock signal is what triggers the FSM to

move from one state to the next.  In the second experiment we provided 2

additional inputs to the network to determine if this would improve the

convergence rate or convergence ratio.  One of the inputs started out high (1)

for half the clock cycle and went low (0) for the remaining half of the cycle.

The other input was Complementary to the first, so that it started out low and

went high after half the cycle.  The cycle length was 2 simulation steps.

Thus, the network was simulated for the same number of steps between

presentation of input patterns as in the previous experiment.  The following

table shows the results of this experiment.
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Table 9: Results of using Complementary clock inputs on the Tomita #4 FSM.

Adding the Complementary clock signals significantly improves the

convergence rate for all network sizes.  The convergence ratio for the smaller

sized networks is also greatly improved.  The networks were not analyzed to

see how the clock signals were being used, since this was not the goal of our

experiment.

Some of the evolved networks were tested with novel input sequences

to determine if they had really learned the FSM.  The networks were tested

on 1400 sequences of length 100 and on 140 sequences of length 1000.

Every network tested produced a fitness greater then 0.99 on both tests.

5.3.3  Sequential Biased Fitness Function

In the third experiment we make use of the sequential nature of the

input sequences to try and improve the fitness function in hopes of further

improving the convergence rate and ratio.  It is hypothesized that the output

of the network for different patterns in the sequence should not be considered

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 19 0 NA

2 21 4 72.3

3 25 18 46.0

4 19 18 39.9

5 16 16 31.5
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equally.  More weight should be given to the output produced for the earlier

part of the sequence than for the later part of the sequence.  Due to the

sequential nature of the problem once a mistake has been made on one

pattern, producing the correct output on latter patterns is irrelevant.  Thus, a

network which can produce the correct output for only the first 3 of the 10

patterns in a sequence should be considered better than a network which can

produce the correct output for 8 of the 10 patterns, but makes a mistake after

the first 2 patterns.

The fitness function was changed to the following to incorporate this

sequential bias in the final fitness.

 is the location in sequence  where the first mistake is made by the

network.   Thus, the network is scored as if it had made a mistake on all

patterns after .  The first mistake is considered to have occurred when

.

The two Complementary clock inputs which proved to be

advantageous in the previous experiment will also be used in this experiment.

Thus, this experiment will differ from the previous only in the fitness

function used.  The results of this experiment can be directly compared to the

results of the previous experiment.
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The following table shows the results of this experiment.  Some of the

resulting specimen were tested as in the previous experiments and confirmed

that they had indeed learned the FSM.

Table 10:Results of using a sequentially biased fitness function

Using a sequentially biased fitness function has significantly improved

the convergence ratio for the smaller sized networks.  The larger sized

networks already had an almost perfect convergence ratio since the first

experiment.  But now with the modified fitness function the larger sized

networks have a 100% convergence ratio.  The overall convergence ratio has

increased to almost 70% from a value of about 56% in the previous

experiment.

The results for the convergence rate are somewhat mixed.  There is a

definite improvement in convergence rate for the smaller sized networks.

However, there seems to be a decrease in the convergence rate for the larger

sized networks.  The reason for these results, it is hypothesized, stems from

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 11 0 NA

2 25 11 47.1

3 32 26 40.3

4 17 17 42.0

5 15 15 57.4
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the fact that although the original fitness function and the sequentially biased

fitness function have the same global optimums in fitness space, the shape of

the fitness landscape imposed by each is different.  The sequentially biased

fitness function provides a more directed landscape leading towards the

global optimum.  Although this helps guide the potential solutions along a

path that presumably contains less local optimums,  it is less efficient than

being able to directly approach the global optimum.  Because the smaller

sized networks are more easily trapped in local optimums they benefit from a

directed fitness space as evident by the improved convergence ratio and

convergence rate.  However, the larger sized networks which were not being

trapped by the local optimums and were able to take a more direct route to the

global optimum are now slowed down by the longer route they must take in

the directed fitness space as evident by the decrease in convergence rate.

5.4  Experiments and Results for the Parity FSM

The desired output of the Tomita #4 FSM does not tend to be very

random.  Rather it is composed of a series of 1s followed by a series of 0s.

Thus, it is possible that the improvements suggested by the experiments in

the previous section were specific to the nature of the Tomita #4 FSM and

may produce different results for other FSMs.  In order to verify the results of

those experiments a second problem was chosen.  The Parity FSM problem

was selected since the desired output of this FSM tends to toggle much more

and can start with either a 0 or 1.  The same three experiments conducted in
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the previous section were repeated for the Parity FSM problem.  The

following tables show the results for each of these experiments.

Table 11:Results of initial experiment

Table 12:Results of using complementary clock inputs

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 43 0 NA

2 17 0 NA

3 19 9 43.8

4 13 9 41.5

5 8 8 38.7

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 28 0 NA

2 28 8 62.1

3 12 11 24.6

4 20 18 48.4

5 12 11 40.6
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Table 13:Results of using a sequentially biased fitness function

The initial experiment shows that there is a very strong tendency for

networks with only one node in the second layer to dominate the population.

Although these networks are unable to solve the problem, they are able to

produce a higher fitness in the early generations and dominate the population.

The fewer number of generations needed to find solutions for this problem as

compared to the Tomita #4 FSM problem suggests that this is an overall

easier problem.  This can be expected since the minimum number of states

required to implement the Parity FSM is only 2 as compared to 4 for the

Tomita #4 FSM.

As in the Tomita #4 experiment adding Complementary clocks inputs

dramatically improves the overall convergence ratio.  However, it is not clear

weather it helps improve the convergence rate for this problem.  Although

there was significant improvement for networks with 3 nodes in the second

layer, there was a slight decrease for the larger sized networks.

Number of nodes
in second layer

Number of times
dominated
population

Number of times
converged

Average number of
generations

1 0 0 NA

2 19 13 31.7

3 32 25 25.7

4 29 29 26.7

5 20 20 31.7
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Using a sequentially biased scoring function significantly improves

both the convergence rate and ratio.  Also it completely eliminated networks

with only one node in the second layer from dominating the population.

From our experience with the Tomita #4 problem an improvement in the

convergence ratio was expected, however an improvement in the

convergence rates was not expected.  However, a possible reason for the

improvement could be that the fitness landscape for the Parity FSM problem

contains more local optimums and slows down direct progress towards the

global optimum.  Although the directed path may be longer the rate at which

potential solutions move along it may be faster, resulting in an improved

convergence rate for all network sizes.

Some of the evolved networks were tested with novel input sequences

to determine if they had really learned the parity FSM.  The networks were

tested on 1400 sequences of length 100 and on 140 sequences of length 1000.

Every network tested produced a fitness greater then 0.99 on both tests.

The results for the Parity FSM problem are quite similar to the results

obtained for the Tomita #4 FSM problem.  The combination of adding

complementary clock inputs and using a sequentially biased fitness function

produced significant improvements in both the convergence rate and ratio.

The fact that the results were similar for two very different FSMs suggests

that these modifications do produce improvements in general for FSM

problems.
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5.5  Discussion of Results

The experiments described in this chapter have demonstrated that

RNNs are capable of learning FSMs from relatively short and few examples

of input-output pattern sequences.  Both the Tomita #4 and the Parity FSM

learning problems can even be solved by networks with only two nodes in the

second layer.  Some of the resulting networks were tested and found to be

stable on many input sequences that were orders of magnitude longer that

those used when evolving the networks.  The reason for the networks being

able to form stable states is due to the piecewise linear activation function

used by the nodes in the second layer.  Such activation functions can be quite

easily handled without any modifications to the GA.

A practical lesson learned from our experience with the FSM problems

is that incorporating some apriori knowledge about the problem into the

fitness function or in the inputs to the network can produce a significant

improvement in how quickly and how often solutions are found.  For both

problem the initial application of the GA produced only marginal results.

However, using the same GA, but with additional complementary clock

inputs to the networks and a sequentially biased fitness function produced

much better results.
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Chapter 6

Balancing an Inverted Pendulum

6.1  Introduction

In the previous chapter we demonstrated that RNN are capable of

learning  FSMs from example.  In this chapter we apply the GA to the task of

developing a recurrent neural network controller capable of balancing an

inverted pendulum.  This task requires continuous valued inputs and outputs,

unlike the discrete valued problems of the previous chapter.  Thus, the nodes

in the second layer will use the continuous time formulation for their

dynamics.  The task of balancing an inverted pendulum can be solved by a

feedforward network and does not require a RNN.  However, we anticipate

from our experience with the XOR problem that the solutions found will

make use of the recurrent connections and will be able to solve the problem

using fewer hidden nodes than would otherwise be possible.

We will again be using the best GA found in Chapter 4.  The use of a

GA will allow us to specify a fitness function which does not directly

incorporate the required output of the network for the current inputs.  We

would like to see if suitable networks can be evolved with a fitness function

that uses only indirect measurements of fitness such as how long the

pendulum was balanced or the position of the pendulum and does not use
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direct information like what force to apply to the cart.  Thus, the networks are

evolved by specifying what they must do and not how they must do it.

The cart and pendulum system was represented as shown in the

following figure.

Figure 7:  The cart and inverted pendulum system.  The network control-
ling the cart receives the position and velocity of both the cart and pendu-
lum and must produce the force to be applied to the cart as output.

The cart and pendulum system is modelled by the following equations:

The values used for the constants are:  = -9.8 m/s2, acceleration due

to gravity;  = 0.5 kg, mass of cart;  = 0.1 kg, mass of pole;  = 0.5 m,

half-pole length;  = 0.0, coefficient of friction of cart on table;  = 0.0,

coefficient of friction of pole on cart.  The force applied to the cart was
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limited in the range of [-10, 10] Newtons.

6.2  Network Structure and Fitness

The network architecture, the activation function and the range of the

parameters are the same as described in Chapter 1.  continuous time nodes

were used in the second layer.  The networks received four inputs and

produced one output.  The inputs to the network were the position and

velocity of both the cart and pendulum.  The output of the network was the

force to be exerted on the cart.  The saturation range for the inputs was [-1.5,

1.5] radians, [-6, 6] radians/second, [-10, 10] meters, and [-20, 20] meters/

second.  The [0, 1] range of the output node was mapped to [-10, 10]

Newtons.

Various attempts were made at finding a fitness function which could

successfully evolve stable RNN based controllers.  Initially time was used as

the measure of fitness.  The score of a network was simply the number of

simulation steps it could “balance” the pendulum.  By balance we mean

keeping the angle of the pendulum and the position of the cart within

specified limits.  The limits used were 90 degrees for the angle and 10

meters for the position.  It was found that this measure of fitness was not

sufficient to produce any suitable networks.  Other fitness functions based on

just the angle of the pendulum or the position of the cart and various

combinations of the two were also tried and found to be unsuccessful.  Using

± ±
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a combination of both time and position of the pendulum, finally turned out

to be a good measure of fitness capable of producing stable controllers.

The function used to determine the fitness of a particular network at

balancing the inverted pendulum was defined as:

 is the fitness of the network on a particular simulation.  is

the number of simulation steps the pendulum was balanced before falling out

of limits.  and  are the x and y distances (positive) of the tip of the

pendulum from the desired position.  and  are the maximum values

possible for  and  respectively (which in this case are 10 and 1).  Thus, on

each simulation step the network gets a value between 0 and 1 based on the

distance of the tip of the pendulum from the desired position.  However, this

equation only applies as long as the network is able to balance the pendulum.

The maximum fitness a network could receive on a particular simulation is

the total number of steps in the simulation.  The overall fitness of the network

is defined to be the sum of its performance on each of the simulations.

In the experiments described later 10 simulations were used to evaluate

each specimen.  The cart was always started from the center of the table, but
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the angle of the pendulum was started at values of: 10, -10, 15, -15, 20, -20,

25, -25, 30 and -30 degrees.  The simulations were run for maximum

corresponding times of: 1, 1, 3, 3, 5, 5, 7, 7, 9 and 9 seconds.  Thus, the

length of the simulations were longer if the initial position of the pendulum

was further from center.  Using these maximum time limits the total time a

network would be able to balance the pole is 50 seconds.  Since a delta time

of 0.01 seconds is used for the simulation steps, this means the maximum

fitness a network could achieve is 5000.  However, it is important to note that

even the best network will not achieve this maximum fitness score.  Even if a

network was able to balance the pole extremely well and keep it at the desired

position, the network will still not get a perfect score of 1 on some of the

initial simulation steps when it is brining the pole from its initial position to

the desired position.

The networks were initialized at the beginning of each simulation so

that the internal state of each node in the second layer was set to 0 and the

output set to the corresponding value determined by the activation function.

6.3  Experiments and Results

One hundred trials were run using a mixed size population with 1 to 5

nodes in the second layer.  A total of 150 specimen were used in the

population with 30 specimen of each network type.  Since it is difficult to

decide when a network has learned to balance the pole based on the fitness of
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the network, all runs were evolved for 200 generations or equivalently 30,000

specimen evaluations. Only the score at the end of the run was saved for the

results.  The results of these experiments are summarized in the following

table.

Table 14:Results for the inverted pendulum problem.

The networks evolved were tested to determine if they were stable

controllers for pole angle perturbations in the range [-30, 30] degrees.  It was

found that networks with a fitness greater than 4700 were definitely stable

controllers.  Networks with a fitness less than about 4250 were definitely not

stable.  The networks with a fitness between these limits displayed oscillatory

behavior.  The behavior of some of these networks is shown below.  The solid

line in each figure shows the x coordinate of the tip of the pendulum and the

Number
of nodes
in second

layer

Number
of times

dominated
population

Minimum
fitness

Maximum
fitness

Average
fitness

Standard
deviation
in fitness

1 20 1257.7 4294.8 1977.4 861.4

2 24 1475.8 4724.4 2985.7 1210.1

3 22 1656.8 4814.2 4057.2 979.9

4 20 1426.0 4859.0 4433.7 890.6

5 14 4591.6 4864.8 4778.5 69.2
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dotted line shows the x coordinate of the cart.

Figure 8: An unstable controller with a fitness of 3910 and 2 nodes in the
second layer.  The solid line shows the position of the tip of the pendulum
and the dotted line show the position of the cart.

Figure 9:A stable, but very oscillatory controller with a fitness of 4315 and
3 nodes in the second layer.
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Figure 10:A stable controller with a fitness of 4814 and 3 nodes in the sec-
ond layer.

6.4  Discussion of Results

One of the most surprising results of these experiments was the

discovery of stable networks with just one node in the second layer.  This

network would be equivalent to a two layer feedforward network with four

nodes in the input layer and one node with self feedback in the output layer.

Although these networks were stable, their behavior was very oscillatory.

Only two such networks were found in the 20 times the population was

dominated by networks with one node in the second layer.  Both networks

had similar sets of weights and thresholds.  A graph of the behavior of one of

these networks is shown below.
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Figure 11:A stable but oscillatory controller with a fitness of 4295 and just
1 node in the second layer.

As can be seen from the results of this experiment, the inverted

pendulum problem is significantly more difficult than the previous problems.

Stable networks were found only 54% of the time.  However, this may not

completely be the fault of the GA.  It may be that the inverted pendulum

problem is very difficult when limited to networks with just 1 to 5 nodes in

the second layer.  If the initial population had been seeded with larger

networks we may have found stable networks more often.  The fact that

stable networks were always found whenever the population was dominated

by networks with 5 nodes in the second layer supports this hypothesis.

However, the GA we used is still at some fault for not having allowed the

networks with 5 nodes in the second layer to dominate more often.  The

problem is caused by the smaller sized networks being able to improve their
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fitness more quickly in the early generations and dominating the population

before the larger sized networks are able to catch up.  A possible way to fix

this problem may be to allow the different sized networks to evolve

independently during the early generations.

The use of a fitness function which incorporated both the amount of

time the pendulum was balanced and the position of the pendulum in the

evaluation of the fitness was critical to the success of finding solutions to this

problem.  Attempts at using fitness functions which used only one or the

other of these measures did not produce any stable (or even oscillatory, but

stable) networks.  Although it may be that all of these fitness functions have

the same global optimum, it seems that using a combination of both time and

position in the evaluation makes the search space much easier to traverse than

when only one or the other is used.
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Chapter 7

Discussion and Further Work

7.1  Introduction

The intent of this thesis was to investigate the GA as a means of

finding network parameters and architecture for a RNN and also to gain

experience in applying GAs to RNNs.  We will first discuss the results of the

experiments performed in this thesis in relation to these goals.  Next we will

discuss some lessons learned in applying GAs to RNNs.  Finally we will

discuss some future work that can be done to possibly further enhance the

GA as a means for evolving RNNs.

7.2  Applicability of GAs to RNNs

There are two areas in which the applicability of the GA for evolving

RNNs were explored.  The first was for finding the network parameters of the

RNN.  The other was for finding the right network architecture to use for the

given problem.

The standard GA, with its main characteristics being generational

progression and roulette wheel selection, was found to be suitable for finding

the network parameters of RNNs applied to simple problems such as the

XOR problem.  However, it was found that the performance of the standard
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GA could be improved significantly by making a few changes to the

algorithm.  Using steady state progression, tournament selection, and gray

scale encoding all helped improve the performance of the standard GA.  The

combination of these three improvements decreased the convergence rate

from about 170 generations to about 50 generations and increased the

convergence ratio from about 70% to greater than 95% on the XOR problem.

This enhanced GA was applied to the more dynamic and complex problems

of finding a RNN for a given Finite State Machine (FSM) and for finding a

network to balance an inverted pendulum.  The GA proved to be quite

successful at solving both of these problems.  However, it was found that a

well defined fitness function was very critical to the success of the GA on

these problems.

As discussed earlier the GA is inherently not well suited for evolving

the network architecture.  This is due primarily to the fixed length bit string

representation required by GAs.  The approach taken in this thesis to alleviate

this problem was to seed the initial population with specimens of various

network architectures and to modify the parent selection scheme so that only

compatible parents were selected for crossover.  The network architecture of

specimens was varied by changing the number of nodes in the second layer.

It was found, as expected, that when such mixed architecture populations

were evolved, one of the network types would slowly dominate the

population.  The network architecture which was better suited for solving the
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problem was most likely to dominated the population.  As discussed in

Chapter 3, the total amount of computation required to find a suitable

network architecture using this method is less than would be required by

running several simultaneous GAs each using a population with a different

network architecture.

In conclusion the GA has proven to be a very powerful and promising

method for finding both the network parameters and the network architecture.

Some of its benefits of using a GA include the ability to easily handle

different neuron models incorporating non conventional activation functions

or other parameters in addition to the usual weights and thresholds.  Another

appealing feature of the GA is the inherently parallel nature of the algorithm.

The evaluation of specimens, which is the most computationally intense part

of the algorithm, can easily be spread over multiple processors with each

processor evaluating a given specimen.  This may allow for a linear speedup

with the number of processors.

7.3  Practical Issues of Applying GAs

The GA is not a very rigorously defined algorithm with respect to the

details of its implementation.  This has both advantages as well as

disadvantages.  The advantage is that it allows the algorithm to be flexible so

that its implementation can be modified to fit a wide range of problems.  The

disadvantage is the details of its implementation may need to be modified to
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get good performance on a specific problem.  Our experience with the GA

has shown that even a small change in the algorithm, such as the mutation

rate, selection scheme, etc., can lead to a significant difference in its

performance.  As mentioned earlier, the three modifications which were made

to the standard GA, in this thesis, lead to significant improvements in

performance.  However, there may still be other modifications which could

be made to further improve the algorithms performance.

Our experience from the experiments performed in this thesis has

shown that the performance of the GA is also very much dependent on the

fitness function chosen to define the problem.  Although two fitness functions

may have the same global minimum in theory, one may be much easier for

the GA to traverse than the other.  In the finite state machine problems it was

found that making the fitness function sequentially biased (to reflect the

sequential nature of finite state machines) helped improved performance.

Also adding additional clock inputs, which provided no additional

information about the problem to be solved, helped to improve the

performance.  On the inverted pendulum problem, fitness functions based on

just the length of time the pendulum was balanced or just the position of the

cart and pendulum were found not to be suitable.  It was found that the fitness

function needed to combine both the length of time the pendulum was

balanced and the position of the cart and pendulum in order to find solutions

on even some of the trials.
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In conclusion our experience with the GA has shown that it is not

trivial to apply the GA to a particular problem.  The procedure for applying

the GA is not a cook book recipe.  It requires a significant amount of effort in

first tweaking the various methods and parameters of the GA to get satisfying

results.  In addition the fitness function defining the problem may need to be

experimented with to further improve performance.  However, these efforts

will pay off if other easier methods for solving the problem are not available

or if the final intent is to solve the problem using a parallel approach.  Also

the implementation of a GA is generally easier than that of other complex

optimization algorithms.  Thus, it requires less effort to get started.

7.4  Future Work

The flexible nature of the GA is well suited for experimenting with

new ideas for possibly improving the performance of the algorithm.  We

divide the discussion of possible future work into three areas.  First we

discuss other possible enhancements that could have been tried in improving

the performance of the standard GA.  Next we discuss the possibility of

including Larmarkism into the GA so that improvements could also be made

during the evaluation of the specimen and incorporated back into the

genome.  Finally, we discuss the possible use of variable length genomes and

alternative genome representations to provide a more natural evolution of the

network architecture.
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7.4.1  Finding Better GA Parameters and Methods

There are many more possible enhancements that could have been

tried in this thesis, but were not, due to limited time constraints.  Some of

these possible enhancements include:

Experimenting with different population sizes.  For the experiments

done in this thesis a population size of 150 specimen was used for mixed

network architecture runs and a population size of 30 was used for fixed

network architecture runs.  Other population sizes could be tried in an

attempt to find a population size that allows for better overall performance.

However, the best population size may be very sensitive to the specific

problem.  Thus, a population size which produces good results for the XOR

problem may not be the best size for the inverted pendulum problem.

Experimenting with the replacement policy in steady state progression.

Although we chose a two player tournament selection replacement policy for

deciding which member of the current population would be replaced by a

newly created one, other policies such as random selection, roulette wheel

selection, or other tournament based selections could be tried.

Experimenting with other crossover operators.  The parameterized

uniform crossover operator was used in all experiments based on its merits

discussed in the GA literature.  However, for some problems it may be that

one of the other crossover operators such as single point, or multi-point
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crossover may be better suited.

When mixed architecture networks are used, the size of the overall

population could be reduced as a particular network size dominates the

population.  This could possibly allow for the algorithm to find a solution

with even less computational effort.  However, reducing the size too quickly

may cause the GA to get stuck at a local minimum.  Thus, finding a good

reducing schedule would be critical to this possible enhancement.

Also when mixed size populations are used the different network sizes

could be kept isolated during the first N generations as if multiple

simultaneous independent GAs were being run.  The different network sizes

could then be allowed to compete for dominance of the population after the

Nth generation.  This would help prevent a network size that is not well

suited to solve the problem from prematurely dominating the population and

would thus help improve the convergence ratio.

7.4.2  Incorporating Lamarckism

One interesting possible enhancement that should be tried in the future

is that of including Lamarckism in GAs.  Lamarckism generally refers to

phenotypic changes in a specimen which occur during its lifetime being

passed back to its genome and eventually to its offsprings.  In biological

organisms, it is believed that Lamarckism does not occur, however there is no

reason why it could not occur in artificial organisms.  In our case of evolving
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RNNs this would mean that we allow for an on line training algorithm, such

as the Alopex algorithm [Venugopal, Pandya, and Sudhakar, 1994], to

operate on the RNN during its fitness evaluation and make small changes to

the network parameters.  At the end of the fitness evaluation we must create a

new bit string genotype of the specimen reflecting its modified network

parameters.  The new bit string would be used if this specimen was selected

for reproduction.  The idea of using Lamarckism with GAs was first

suggested by [Hinton and Nowlan, 1987].  Their experimentation with a very

simple problem showed that Lamarckism could assist the GA in finding the

global minimum.

7.4.3  Variable Length Genome Representations

The approach introduced in this thesis for selecting a network

architecture is based on the fixed length genome requirement imposed by the

standard GA.  However, if in the future we want to truly allow for an

evolutionary process to operate on the architecture of the network as well, we

must allow for non-fixed length genomes and for operators which allow for

these genomes to be combined to produce new genomes which may have

lengths very different from the parents.  This would allow for novel network

architectures to emerge aside from the ones with which the population was

initially seeded.  If we decide to accept these changes to the GA, then the

remaining difficulty is the encoding mechanism to use for encoding the

network parameters on the genomes.  In the standard GA the position of the
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parameter on the genome determines it function.  However, in a variable

length genome representation the location of the parameters will change if a

genome gets bigger or smaller.  Thus, each parameter must be able to

represent its function independent of the position at which it occurs.  Also,

since the crossover operators will generally not know about the details of the

encoding mechanism used, it is possible for their results to produce over

specified or under specified (with respect to the network parameters needed)

offsprings.  An approach referred to as messy GAs tries to address these

problems caused by variable length genomes [Goldberg, Deb, and Korb,

1991].  However, an alternative possibility, particularly well suited for the

evolution of neural networks is to let the genome represent not the network

parameters, but rather instructions to a cellular automaton.  Thus, from a

single cell executing the instructions provided by the bit string, a network

could emerge after many iterations of cell division and growing connections.

Although this approach is much more closer to what happens in nature during

the genotype to phenotype mapping, it is computationally much more

expensive.  Also, Lamarckism could not be incorporated into the GA with

this method, since an inverse mapping from the phenotype to the genotype

does not seem possible with this representation.

7.5  Conclusion

RNNs hold the promise of providing a more general network

architecture that is applicable to a wider range of dynamic and state
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dependent problems.  However, finding the network parameters as well as the

right network architecture for the problem is generally more difficult when a

RNN is used.  The results of this thesis suggest that an evolutionary approach

such as a GA can serve as a very powerful tool in helping to find the network

parameters and architecture for applying a RNN to a specific problem.

Ideally one would like to simply specify the problem and have the GA

magically produce a neural network based solution.  However, much work

remains to be done in the future to enhance the GA to this level of capability.
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Appendix A

Effects of Genetic Parameters on Popula-
tion Diversity

To better understand the relationship between population size,

mutation rate and diversity some analytical experiments were performed.

Initially the analysis is performed in the absence of selective pressure.  To

simplify the analysis we study what happens to the diversity of just one bit

location of the whole population.  We begin by defining the frequency, , of

the population as:

where  is the number of specimens that have a bit value of 1 and  is

the total number of specimen in the population.  We let  be the frequency of

specimens that have a bit value of 0.  Thus, .  We can now define a

simple measure for the diversity of the population based on the frequency of

the population  as follows:

This measure of diversity ranges between 0 and 1/2 with 1/2

representing the maximum level of diversity and 0 representing the fact that
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all the specimen are identical.

We now determine the probability, , of creating a child specimen

with a bit value of 1.  We assume that two parents are picked randomly

(because we are not applying any selective pressure) and that uniform

crossover is used to create the child.  For now we consider the case where no

mutation is applied after creating the child.  The probability of the child

having a bit value of 1 is:

This simply reduces to .  Thus, the probability of the child

specimen having a bit value of 1 using random selection and uniform

crossover is the same as the probability of selecting a specimen from the

current population with a bit value of 1.  This simplifies the process of

creating the next generation of specimen to just making N selections from the

current population.  Given that the current frequency of the population is

we can find the probability of the frequency being  in the next generation

as follows:

For a population of size ,  can be used to define an

( )x( ) matrix  such that each element is given by:
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If the current probability distribution for the frequency of specimen is

given by , then after  generation the probability distribution of the

frequencies can be found by:

 and  are  element column vectors where the th element is

the probability of the frequency being .  is a ( )x( ) diagonal

matrix with elements of  along the diagonal.  is a  element row

vector where each element is 1.  will be defined as follows so that initially

the population has a high level of diversity.

The diversity of the population after  generations, given that the

initial probability distribution is , can be found as follows:

Using the above equation we can now generate graphs of time (in

generations) vs. diversity for populations of different sizes.  The following
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figures shows such graphs for populations of size 10, 20, 40, and 80.

The diversity decreases much faster for smaller sized populations than

for larger populations.  In fact it seems that the number of generations needed

for the diversity to decrease to a certain level is directly proportional to the

population size.  This is confirmed by the following graph which shows

normalized generations (generations / population size) verses diversity.  The
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lines for all population sizes in this graph are identical.

This graph shows that regardless of population size the diversity will

go to zero in about 6  generations or equivalently 6  specimen evaluations

if mutation is not used.  This loss of diversity occurs even in the absence of

selective pressure and is referred to as genetic drift in population biology.

We now introduce the effects of mutation and change the way in which

we construct the probability distribution matrix .  The rate of mutation is

defined to be the probability  with which any bit in the newly created

specimen is toggled.  The probability of the child specimen having a bit value

N N2

M

µ
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of 1 when mutation is used is given by:

Which simplifies to:

Given that the current frequency of the population is  we can find the

probability of the frequency being  in the next generation as follows:

This modified formulation for the probability distribution can now be

used to construct the  matrix and compute diversity as a function of

generations as before.

The following graph shows the rate at which diversity decreases for
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various mutation rates using a population size of 20 specimen.

From this graph it is apparent that adding mutation causes the diversity

to decrease more slowly and finally reach a minimum level.  The diversity

does not decrease below this minimum level regardless of the number of

generations.  Different mutation rates result in different minimum levels of

diversity with larger mutation rates leveling off at higher levels of diversity.

It is also apparent from this graph that even very small mutation rates have a

significant effect on the final level of diversity attained.

The following graph shows how the same mutation rate effects the
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diversity of different populations sizes.

The same mutation rate effects larger populations more than the

smaller ones and causes the larger populations to reach a much higher final

level of diversity than smaller populations.

(This raises the question that given the population size and the

mutation rate can one compute the diversity at which the population will

settle.)
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The effects of selection are very difficult to model analytically.

However, we can make some simplifying assumptions and try to approximate

the effects of selection on diversity.  Introducing selection will generally have

the effect of increasing the rate at which diversity decreases and possibly

causing the final diversity level to be lower.  The effects of selection are

produced by two completely independent factors.  First selection causes a

reduction in the effective size of the population.  This is simply caused by the

fact that not all specimen are selected with an equal probability.  Secondly if

there is a tendency for a particular bit value to be favored at a bit location by

the fitness function, selection will in addition cause the effective frequency of

the population to change.  The effective frequency may increase or decrease

depending on what bit value is favored at the location.  Thus, the total effects

of selection at a particular bit location depends not only on the parent

selection policy used, but also on what bit value is favored for that location

by the fitness function.

For any given population the fitness values associated with the

specimens defines a ranking such that the specimen can be ordered based on

their fitness rank.  A parent selection policy can be modeled as probabilities

associated with selecting a specimen with a particular rank as the parent.  Let

 be the probability of selecting a specimen with rank  as the parent.  For

rank based selection policies such as tournament selection these probabilities

ρi i
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will be constant through out the course of the GA run.  For purely fitness

proportional selection policies such as roulette wheel selection these

probabilities will vary from one generation to the next.  In this analysis we

consider only rank based selection policies.  If uniform crossover is used than

the probability that the bit-value of the child will come from a specimen with

rank  will be the same as the probability of that specimen being chosen as

one of the parents.  For inclusive binary tournament selection, with the same

specimen possibly being selected more than once, the probabilities are given

by:

Note that smaller values of  indicate a higher rank.

The unequal probability of selecting specimen as parents results in

reducing the effective population size.  This is true regardless of weather or

not a particular bit-value is being favored for that location.  Since our model

for computing diversity is based on all specimen in the population being

selected with an equal probability (random selection) we must find a new

probability  based on the probabilities  such that all specimen in the new

effective population of size  are selected with the probability .  Also by

definition .  We can find the constant probability  by taking a

weighted average of the probabilities .  Each probability is weighted by
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how often it is used.  Thus, each probability is weighted by itself so that:

We can use  to find that the new effective population size  is given

by:

If there is a correlation between the bit value of a specimen and its rank

then selection also has the effect of increasing or decreasing the effective

frequency of the population.  To determine the effects of selection on the

frequency of the population we must first measure the correlation between a

specimens bit value and its rank in the population.  The correlation between a

specimen having a particular bit value and the specimens rank in the

population can be converted to a probability of the particular bit-value

occurring at a given rank.  Let  be the probability of the bit value 1

occurring at rank location .  Such a set of probabilities can be computed by

using  sets with  specimen in each set.  The sets must be maximally

diverse so that both bit-values are represented equally.  The specimens in

each set can be ranked based on fitness and the sets combined to produce a

histogram  of how often the bit-value 1 occurs at rank .  This histogram

can be divided by  to find the set of probabilities  associated with the
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ranks.  These probabilities are only representative of the case when both bit-

values are represented equally and must be computed for other cases as

discussed later.  Also these probabilities are likely to change for most bit

locations during the course of the GA run.  But for most significant or least

significant bit locations these probabilities may remain constant.  For least

significant bits the probabilities should be constant and equal to about .  For

most significant bits the probabilities will increase with increasing rank if the

value 1 is favored for that location or decrease if the value 0 is favored.

We now define the correlation probabilities more generally to

incorporate unequal representation of the bit-values.  Let  be the

histogram produced by ranking  sets of  specimen and counting the

number of specimen at rank  that have a bit-value of 1.  The sets are chosen

such that the frequency of specimen in each set is .  Note that

.  Also the sum at each rank location for a histogram

produced for a bit-value of 1 and the histogram produced for a bit-value of 0

should  equal .  Thus, .

We define the probability of the bit value 1 occurring at rank location

more generally as:
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This simplifies to:

Similarly we define

Since

This simplifies to:

If we are only given  we can compute  using the

following:

This equation was constructed so that ,  and

.  This equation can be modified by making a substitution

so that we can find  given .
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This equation simplifies to give:

A similar equation can be used to find  from .  Since the

final diversity computed should be the same weather we use  or ,

we will no longer refer to the specific bit-value and simply specify .

Our original model for computing diversity is based on an equal

probability of any bit-value having a particular rank, thus we must compute a

new constant probability  from the probabilities .  This constant

probability will have a new associated effective population size  which

can be used to find the effective frequency of the population due to selection

using:

We can find the probability  by taking a weighted average of the

probabilities .  Each probability is weighted by how often it is used so

that:

By definition .  This can be used to combine the above
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equations to find that:

Note that if all values of  are constant and equal to  as is the case

when the selection policy is random selection, the above equation reduces to

.  This correctly implies that even if the fitness function favored a

particular bit value, the effective frequency of the population does not change

if random selection is used.  Likewise if a nonrandom selection policy is used

but the fitness function does not favor a particular bit-value the effective

frequency does not change.

The total effect of selection is to change the effective population size to

 and to change the effective frequency of the population to .  is

computed from the probabilities  due to the selection policy and  is

computed from both  and .  Thus, the effective frequency is

sensitive to both the selection policy and the fitness function.  The effective

values can be used in the construction of the  matrix to incorporate the

effects of selection.  If  is not a whole number it will have to be rounded in

order to construct the  matrix.  In such cases the computed diversity will

only be a close approximations to the true diversity.

The above formulation for computing diversity was verified against

simulation results.  Two sets of two experiments were performed.  The first
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experiment in the set used a fitness function which did not favor a particular

bit-value.  The second experiment in the set used a fitness function that was

biased towards a particular bit-value.  The first set of experiments used a

population size of 40, a mutation rate of 0.01, and binary inclusive

tournament selection.  The second set of experiments used a population size

of 80, a mutation rate of 0.01, and 3 player inclusive tournament selection.  A

uniform random number in the range [0, 1) was assigned to each specimen as

its fitness and used by the selection policy in the first experiment of the sets.

In the second experiments the random fitness was assigned as  if the bit-

value was 0 and  if the bit-value was 1.  is a uniform random

number in the range [0, 1) and  is the fitness bias.  Thus,  is also a random

number in the range [0, 1), but its distribution is skewed if the bit-value is 1

so that the fitness will tend to be greater or less depending on the value of .

In the second experiment of the first set  was set to 0.8 to favor a bit-value of

1 and was set to 1.4 to not favor a bit-value of 1 in the second experiment of

the second set.  1000 trials were run for each experiment and the diversities

for all trials were averaged together.

In order to theoretically compute the diversities for each of the four

experiments, we need the selection and fitness correlation probabilities for

the experiment.  The probabilities for selection based on rank can be

calculated theoretically knowing the selection policy.  However, the

probability of a particular bit-value occurring at a specific rank must be found

f u=

f ub= u

b f

b
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from a simulation.  This was done using the procedure described earlier for

producing a histogram (using =1000) and calculating  from it.  The

following graphs show  and  for the second experiments of the two

sets.

The top graphs are for the second experiment in the first set and the

bottom graph is for the second experiment in the second set.  The graphs for

selection policy show the probability of a specimen of a particular rank being

selected as a parent.  Note that lower numbers indicate a higher rank.  The

graphs for fitness bias indicate the probability of a specimen with a bit-value

of 1 occurring at a particular rank when the population contains an equal

k λi
1 1 2⁄( )

ρi λi
1 1 2⁄( )
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representation of both bit-values.

The following graph show the results of simulated and computed

diversities for the two experiments in the first set when the population size

was 40.

The solid lines are the results of the simulations, while the smoother

dotted lines are the results of the computations.  The results for the second set
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of experiments are shown in the following graph.

The results of the computed and simulated diversities for both sets of

experiments match very closely, verifying the correctness of the

computational model.  The computed diversities were also calculated using

 (which was computed from ) and as expected were found to

give the same results.

Conclusion:

There is a strong relationship between population size, mutation rate

and selection on the diversity of a population.  Increasing the population size

or mutation rate increases the final level of diversity in a nonlinear way.

λi
0 1 2⁄( ) λi

1 1 2⁄( )
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Increasing selective pressure decreases the final level of diversity.  The final

level of diversity for a given population size, mutation rate and selective

pressure can be computed in most cases using an iterative formulation

described earlier.  This theoretical computation will be useful in determining

weather the level of diversity, when the fitness function does not favor a

particular bit, would be high enough to ensure against saturation for the

population size and mutation rate being used.  If the final level of diversity

drops below  for this case then the GA will certainly experience

premature convergence.  Also a computed measure of diversity for the case

when the fitness function does not favor a particular bit provides a mean for

determining an upper bound on the rate at which the sampling space of new

specimen decreases and an upper bound on the final sampling space.  The

upper bound on the fraction of the solution space being sampled at generation

k is given by , where  is the computed diversity and  is

the length of a bit string used to represent a potential solution (specimen).

1 N⁄

D k( ) 1 2⁄+( ) B D k( ) B
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