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ARIMAA: GAME OVER

Three names, three stories and deep admiration from the Editorial Board. That is the main contents of this issue. 
The three names are: Omar Syed, David Fotland, and David Wu. The protagonist of our euphoria is 
undoubtedly David Wu. In 2011, he obtained his B.Sc. degree under the supervision of David Parkes (Harvard 
University) by delivering the thesis “Move Ranking and Evaluation in the Game of Arimaa”. Earlier, in 2008, 
David’s program SHARP had entered the Arimaa Computer Championship for the first time and came second 
behind David Fotland’s program BOMB. In 2011 and 2014 SHARP won the Arimaa Computer Tournament, but 
not the contest against the best human players of that time.

However, in 2015 SHARP won the Computer Tournament as well as the Arimaa Challenge (see pp. 3-11). A
fantastic performance, which is in some sense comparable to DEEP BLUE’s victory over Kasparov (1997), and 
WATSON defeating Ken Jennings and Brad Rutter in JEOPARDY! (2011). In Chess and JEOPARDY! the initiative 
was in the hands of IBM, and the scientific progress was recognized worldwide.

Now the ICGA community is proud to have its own challenging game owing to the initiative by Omar Syed. In 
2003, Omar and his son Aamir Syed published an idea in the ICGA Journal on a new game, called Arimaa and 
offered a prize of US $10,000 for the programmer who developed before the year 2020 a program that defeated 
the top human Arimaa players. The game looked very difficult for computers (and humans!). Experienced Go
programmer David Fotland did the “opening” moves. His program BOMB won the first five Arimaa Computer 
Tournaments. However, BOMB never had any chance of winning the Arimaa Challenge against the top human 
players involved.

All in all, your Editor is pleased with the contribution in this issue by Omar Syed in which he reports the 
Arimaa story: from Inception to Completion. It is breathtaking to read how he arrived at the idea of Arimaa, 
how he continued the idea by organising a series of tournaments, and then seeing how his idea was realised in a
tough competition.

The crown on his idea came, to his own surprise, already in 2015. The achievements of the program developers
are well expressed by David Fotland (five-time winner of the computer tournament) and David Wu (three-time 
winner of the computer tournament and now (2015) also winner of the contest against the top human players).

Although the Arimaa community is not as large as the chess or the JEOPARDY! communities, the success of 
David Wu’s SHARP did not remain unnoticed to the great game community. A search on Google will bring you 
to a great variety of descriptions of this success.

1 The Editor gratefully recognizes the cooperation with Kingpin Chess Magazine’s Editor Jonathan Manley and author 
Andy Lewis, in particular he appreciates their permission to reproduce the slightly adapted version of this article.
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Of course, “Arimaa: Game Over” is the most evident title for this editorial. However, some remarks are in 
order. Currently, the term Game Over is used frequently in video games. There are hundreds of designs with the 
message Game Over. The message was often used for pinball games, and later for Arcade games, meaning 
“your game is over”. Later on, the expression tended to have a somewhat negative meaning. Nowadays, it is 
almost an equivalent for “It’s all over”. 

However, in our games community we know that it is not so. The last scientific challenge, establishing the 
game-theoretical value of Arimaa, is still waiting for its solution. Arimaa is now in the class of games in which 
computers outperform the best human players, just like chess. Yet, the ultimate question is: can we solve the 
game? As readers of this Journal know we distinguish between weakly solving and strongly solving a game 
(introduced by Allis, 1994). So, we would like to encourage all researchers to continue the development of
advanced techniques to find the ultimate truth of Arimaa.

After completing my Editorial, I was happy with the contents and the title. For curiosity, I checked at Google 
whether this title was used earlier. Then I arrived at the Kingpin site and found Andy Lewis’ article. David Levy 
brought me in contact with Jonathan Manley (their Editor) and Andy Lewis. The result is to read on pp. 55-62. 
Thank you both for the fast cooperation.

Next to the Arimaa euphoria we have still maintained the character of the Journal by publishing two notes, one 
by Guy Haworth on Chess Endgame News. The second note is on research on the computational complexity of 
n x n Chinese Chess by Qiang Gao and Xinhe Xu. 

We wish our readers a pleasant reading time and apologize for the late appearance of this issue. We promise to 
provide you with more interesting news soon.

Reference
Allis, L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D. Thesis, Rijksuniversiteit 
Limburg, Maastricht, the Netherlands.

Jaap van den Herik

The credits of the photographs in this issue are to: Fritz Juhnke, Jean Daligault, Mathew Brown, Omar Syed & 
David Wu, and to Kingpin Chess Magazine.

David Wu

ICGA Journal readers who are interested in information on our publications are referred to our website. A complete list 
of all articles, notes, and literature reviews published in the ICCA Journal and the ICGA Journal is accessible on the 
Internet at http://www.icga.org

It is also possible to receive your membership copy in electronic form. Please, arrange the change of your subscription 
with our Editorial Manager Johanna Hellemons.
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THE ARIMAA CHALLENGE: 
FROM INCEPTION TO COMPLETION

Omar Syed1

Murphy TX, USA

ABSTRACT

In 2003, I published a paper in the ICGA Journal describing the game Arimaa and 
offering a challenge prize of $10,000 USD to develop a program capable of defeating the 
top human player before the year 2020. In 2015, David Wu developed a program called 
SHARP which won the Arimaa Challenge. This article will discuss my perspective of the 
Arimaa Challenge over the years from inception to completion.

1 THE INCEPTION

Arimaa was inspired by the DEEP BLUE vs Kasparov match of 1997. It started as a curiosity to see if it might be 
possible for humans to continue staying ahead of computers if the game still used a standard chess set, but with 
different rules. My initial attempts at creating such a game simply added multiple moves per turn to Chess in 
order to increase the branching factor. I soon realized that although such games might be harder for computers, 
they were probably even more harder for humans due to the large amount of change that can occur from one 
move to the next. It was not until I was teaching my then four year old son Aamir how to play Chess starting 
with just the kings and pawns that I noticed using simple one-step moves per turn could also provide a high 
branching factor while keeping the amount of change between turns manageable for humans. We named the 
game after my son; Arimaa is Aamir spelled backwards but with a leading A. Even after this breakthrough, it 
still took quite a bit of experimentation and playtesting to find a set of rules that made the game interesting 
while not having any obvious flaws. The game, along with the challenge, was announced through the Arimaa 
web site on November 20, 2002.

A primary motivation for the challenge was my feeling that the spectacular chess match of 1997 was done in a 
way that was not only unfair to Kasparov, but also did not provide any benefits to the scientific community or 
even a playable engine for the chess community. It was my hope that Arimaa, along with a well defined annual 
Arimaa Challenge match, would provide the next feasible target, which if achieved would provide some benefit 
to the scientific community. The challenge was offered only until 2020, since I wanted the challenge to be won 
by a software breakthrough and felt that advances in hardware would lead to the challenge being won shortly 
after 2020, even without any significant advances in software. To ensure that any breakthrough was made 
available to the scientific community, a condition of receiving the challenge prize was to publish a paper in the 
ICGA Journal describing the winning program. A second requirement of the Arimaa Challenge was that all 
submitted programs would be permanently saved and be made playable in the online gameroom after the event 
for next years’ programs to train against. It also allowed humans to practice against the current best engines. 
All games played in the gameroom were archived and made available for research.

2 THE AI-RESEARCH COMMUNITY

Soon after the challenge was announced, several members of the game AI-research community attempted to 
tackle the challenge. The late Don Dailey (developer of the KOMODO chess engine) was the first to create an 
Arimaa engine. Within a couple months Don had a surprisingly strong program offering games in the Arimaa 
gameroom. In designing Arimaa, I had used the Zillions-of-Games general game-playing engine, which allows 
specifying the rules of the game in a Lisp like language, and then immediately being able to play the game 
against the Zillions engine. Using only look ahead and no game-specific knowledge, this engine was able to 
play at a strong level in most games one could dream of. However, it was incredibly lousy at Arimaa due to the 
high branching factor. This helped build my confidence that Arimaa would be a difficult game for computers if 
only a brute-force search was used. However, Don’s program, called OCCAM, surprised me in how well it 
played when the search engine was much faster and included some game knowledge. When Don realized that 

1 Email: osyed1@gmail.com
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there was very little expert knowledge available for Arimaa, he felt that he could not make much progress on 
his program and went back to developing his chess engine which now has gone on to become the highest rated 
in the world.

Don mentioned to me that he had heard about Arimaa through a forum post by David Fotland. When I looked 
up David Fotland it turned out that he was not only the developer of a world class Go engine, but had also 
attended Case Western Reserve University, my alma mater. I contacted David to see if he might be interested in 
developing an engine for Arimaa. He replied back that he could probably win the challenge in the first year, but 
that the prize was not enough to make it worth the effort he would need to put in. I offered to double the 
challenge prize for him if he could do it in the first year. After accepting the offer, he explained to me that the 
Arimaa Challenge could potentially be won in the first year because it typically takes a human player 5 years to 
reach masters level in deep games like Chess and Go, while computers, in contrast, can be programmed to play 
better than a beginner within a year. He was right; and this is something that I had not considered before 
offering the challenge. For all practical purposes, the Arimaa players at the time, including myself, were just 
beginners. This became quite obvious when David’s program called BOMB climbed the playing-strength ladder 
and passed all of us within a few months and became the highest rated player. Fortunately, Claude Chaunier, 
the former Lines-of-Action world champion, became interested in Arimaa and discovered some strategies that 
prevented the game from becoming too tactical and made it more favorable for humans.

3 THE FIRST CHALLENGE MATCH

The first challenge match occurred in early 2004. BOMB easily defeated the competitors in the computer 
championship to win the rights to play in the challenge match. Although the challenge rules allowed me to pick 
any human player to defend the challenge, I was perhaps as good a defender as anyone else, since we were all 
pretty much beginners. So I decided to defend the first challenge match myself. Since BOMB had played many 
online games and the human players learned some of its weaknesses, I was able to win all of my challenge 
games; even giving a rabbit handicap in the final game. None the less every game was nerve wrecking and felt 
like a marathon, with some of the games lasting almost eight hours.

To defend the second challenge match, I asked Frank Heinemann, the winner of the first world championship. 
He was hesitant to do it since it was a long series and would put him under pressure to perform his best 
throughout. After much discussion, he finally accepted. Again, BOMB was the dominant program at the time 
and became the challenger. Frank was able to defend the challenge with an almost perfect record, losing only 
the fourth game.

The original challenge was structured to be an eight game series against a single human opponent with the 
requirement that the computer must win the series to win the challenge with a tie being in favor of the human 
defender. After the experience gained from two years of organizing the challenge match and actually playing 
one of the matches, I realized that the physiological pressure of defending the challenge was a bit too much for 
a single human player. Also, playing eight games was quite a burden. Starting with the third challenge match, 
the format was changed and has stayed the same ever since. In the new format, there are three human defenders 
each playing a three-game series with the computer, which needs to win the series against each of the human 
defenders in order to win the challenge. To earn the right to play in the challenge match, the top-two programs 
from the annual computer championship played against human players for a few weeks, referred to as the 
screening period. The program with the best record against humans would go on to play in the challenge match. 
This served a dual purpose; first, it ensured that the computer playing in the challenge match was not just 
strong against other computers, but also against human players. Second, it provided the challenge match 
defenders with some information on how the computer would play against humans. The challenge defenders 
are not allowed to play against the programs during the screening period.

4 THE CHALLENGE RULES

Defining the challenge rules to be fair to both the defenders and the challengers is like trying to balance an 
asymmetric game. The defenders would like to play the computer as much as possible before the challenge or 
at least have it play many games against others so they can learn about its weaknesses. The challenge 
contenders will prefer to have as little exposure of their program as possible so that its games and style cannot 
be studied by the humans. This was the case in the DEEP BLUE vs Kasparov match, where the latest version of 
DEEP BLUE had not played any public match games prior to the match against Kasparov. This was clearly not 
fair to Kasparov, who had been playing in tournaments prior to the match and having his games analyzed by 
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DEEP BLUE. On the other extreme was the 2002 and 2006 DEEP FRITZ vs Kramnik match, in which Kramnik 
had complete access to prepare with the exact same program he would play against well in advance of the 
match. The Arimaa Challenge attempted to find a fair balance between what the defenders want and what the 
challengers want. The complete archive of all games played in the gameroom are available for download and 
updated weekly so that challengers can make use of this information. Prior to the challenge, the games from the 
computer tournament and the screening period provide the challenge defenders with some information about 
how the current version plays. Previous versions of all programs that participated in the computer tournament 
are always available for practice.

A more subtle issue with the Arimaa Challenge is that the human defenders are not offered any compensation 
for their time and effort in defending the challenge match and only do it for the pride and glory of having 
defended the challenge. Thus, it would not be very difficult for one to exploit this by offering the defenders 
compensation to not win their series. Having three defenders instead of just one and announcing the challenge 
defenders only shortly before the start of the challenge helps to increase the security, but if the stakes were high 
this would not be enough. As is obvious from sports betting if the stakes are high enough, it does not matter 
how much you pay the players, the outcomes can be rigged. So having a moderately small challenge prize helps 
to keep the stakes low and avoid such issues.

5 THE PROGRAMS INVOLVED

When BOMB was not able to win the challenge after the first two years, David Fotland began to lose interest in 
tackling the challenge. He made some experimental changes to BOMB in the third year, which actually made it 
weaker than the previous version. After the third year he stopped making any enhancements to BOMB.
However, the 2005 version of BOMB continued to dominate the computer tournament, winning it the first five 
years and playing in the challenge match each of those years. Table 1 shows all the programs that attempted to 
try for the Arimaa Challenge by entering the computer championship tournament as a first step.

There were many more programs that played in the online gameroom but did not enter the computer 
championship. Some developers with notable prior achievements include:

● Toby Hudson, developer of a former world champion RoShamBo program
● Jeff Bacher, developer of the world champion Octi program
● Martin Piotte and Martin Chabbert, winners of the Netflix million dollar challenge
● Brian Haskin, a contributor to the Google AI challenge and author of a detailed study of the Arimaa 

branching factor
● Haizhi Zhong, a Phd student under Jonathan Schaeffer of the renowned University of Alberta games 

research group

In 2008, David Wu first entered his program called SHARP into the annual computer championship tournament. 
SHARP entered the Arimaa scene with a bang by placing second in the event, losing only to BOMB and earning 
its way to the screening period. It managed to win 4 out of 16 games against human opponents during the 
screening period, but BOMB won 9 out of 16 to move on to the challenge match. Nonetheless, it was an 
impressive performance for a new program.

In 2009, Jeff Bacher swept the events with his program CLUELESS, winning the computer championship and the 
right to play in the challenge match. CLUELESS had been entering the event each year since 2005, but had not 
been able to topple BOMB. In 2009 CLUELESS was enhanced to start using multiple processors and was able to 
surpass BOMB. This marked the turning point for Arimaa programs making use of multiple cores. Before 
CLUELESS, the programs were all single threaded. After 2009, all programs that won the computer 
championship were multithreaded. This marked the end of the road for BOMB. It was not only single threaded, 
but played a deterministic game using the same seed every time. Interestingly, GNOBOT, which made use of 
book learning by keeping track of all games played in the gameroom, was able to defeat BOMB that year by 
playing the same sequence of moves that CLUELESS played two rounds earlier.
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Program Developer Computer Tournament Years Challenge Years

OCCAM Don Dailey 2004, 7

BOMB David Fotland 2004*, 5*, 6*, 7*, 8*, 9, 10, 11 2004, 5, 6, 7, 8

GNOBOT Toby Hudson 2004, 5, 6, 7, 9, 10

CLUELESS Jeff Bacher 2005, 6, 7, 8, 9*, 10, 11, 12, 13, 14, 15 2009

LOC Gerhard Trippen 2005, 6, 7, 8

AAMIRA Paul Pogonyshev 2006, 7

ZOMBIE Evan Dorn 2007, 8, 9

FAERIE Evan Dorn 2007

SHARP David Wu 2008, 9, 10, 11*, 12, 13, 14*, 15* 2015*

OPFOR Brian Haskin 2008, 9, 10, 11

BADGER Paul Pogonyshev 2009, 10

RAT Gerhard Trippen 2009

MARWIN Mattias Hultgren 2010*, 11, 12, 13, 14, 15 2010, 11, 13

PRAGMATICTHEORY Martin Piotte and 
Martin Chabbert

2010

BRIAREUS Ricardo Barreira 2011, 12* 2012

LUCY Nathan Blaxall 2012

ZILTOID Ricardo Barreira 2013*, 14 2014

DRAKE Tomas Hrebejk 2014

Z Nathan Blaxall and
Ricardo Barreira

2015

JUMBO Peter Mckenzie 2015

WEISER Nicolas Barriga 2015

NWORBA Mathew Brown 2015

* = won the event
Table 1: Programs Participating in the Arimaa Challenge.

6 THE HARDWARE USED: UNIFORM PLATFORM

During the computer championship, all programs run on the same hardware. This ensures that the real 
difference between the competing programs is the algorithms they use and how well they make use of the 
available hardware. The hardware is chosen to be off-the-shelf commodity hardware that can be purchased 
within $1000 USD at the time of the event. After the computer championship, the same hardware is used for 
the challenge match. Table 2 shows the hardware and operating systems that were used over the years.
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Year CPU brand, GHz, cores, total GHz Memory GB Disk GB OS version, bits

2004 Intel P4, 2.4, 1, 2.4 0.5 40 RedHat v9.0, 32

2005 Intel P4, 2.8, 1, 2.8 0.5 80 RedHat ES3, 32

2006 Intel P4, 3.0, 1, 3.0 1 120 Fedora 3, 32

2007 Intel PD, 3.4, 2, 6.8 2 160 Fedora 5, 32

2008 Intel E6420, 2.1, 2, 4.2 2 160 CentOS 5, 32

2009 Intel Q8200, 2.3, 4, 9.3 2 160 CentOS 5.2, 32

2010 Intel Q9550, 2.8, 4, 11.3 2 250 CentOS 5.4, 32

2011 Intel X3360, 2.8, 4, 11.3 4 500 CentOS 5.5, 64

2012 Intel E3-1220, 3.1, 4, 12.4 4 500 CentOS 5.7, 64

2013 AMD 4280, 2.8, 8, 22.4 8 60 SSD CentOS 6.3, 64

2014 Intel L5639, 2.1, 12, 25.5 32 1000 CentOS 6.5, 64

2015 Intel X5650, 3.0, 12, 36.7 48 500 CentOS 6.5, 64

Table 2: Hardware and OS used in the Arimaa Challenge.

7 MULTI-CORE PROCESSORS

Once the Arimaa programs began using multi-core processors, they were destined to eventually surpass the top 
human players. But the big question of the Arimaa Challenge was: Could it be done before the year 2020 by 
finding a software breakthrough?

The high branching factor of Arimaa ensured that a brute force approach would not be feasible, and strong 
programs would need to incorporate a high level of pruning beyond just minimax search with alpha-beta 
pruning. When a high level of pruning is needed, the evaluation function would need to be quite complex to 
select good lines worth investigating and even determining the order in which to investigate them. It is possible 
that such an evaluation function could become unmanageable for humans to hand code. One approach to 
managing this would be to use some form of machine learning to develop the evaluation function. My hope was 
that any machine learning algorithm used to assist the development of the evaluation function could potentially 
be used for other games and applications beyond just Arimaa.

8 STRATEGIES AND TACTICS PUBLISHED IN BOOKS

A wise man once said: “We create our own demons”. For Arimaa, this came in the way of documented 
knowledge about the finer points of the game. The first M.Sc. thesis was by Christ-Jan Cox (2006) titled 
Analysis and Implementation of the Game Arimaa. The top human Arimaa players also began documenting and 
sharing the knowledge they had gained about Arimaa. David Fotland (2006) did so in the Computer and Games 
Conference in Ramat-Gan, Israel with the title Building a World-Champion Arimaa Program. The activities by 
the top programmers and top players also resulted in an online wikibook, as well as physical books about 
Arimaa. In 2009, Fritz Juhnke, a former world champion, published Beginning Arimaa: Chess Reborn Beyond 
Computer Comprehension. The book covered some of the early history of Arimaa as well as the current state of 
Arimaa strategies and tactics. In 2012, Jean Daligault, also a former world champion, published Arimaa 
Strategies and Tactics. The book focused exclusively on how to play Arimaa well, capturing many principles to 
help one become better at Arimaa faster than had been possible for the early players. This was precisely the 
kind of game knowledge that Don Dailey was looking for to incorporate into his program. This burst of 
knowledge reignited the arms race between the humans and computers, which had simmered down after the 
humans had surpassed BOMB. It was clear that the new generation of programs after 2009 were benefiting not 
only from using multi-core processors, but also by incorporating the new game knowledge that was becoming 
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available. As David Fotland had pointed out, it is much faster to incorporate game knowledge into a computer 
than it is for humans to absorb it. For humans, there is the additional problem that even if game knowledge is 
available, not everyone has the talent to absorb it, even if they put in the time and effort. I, for one, will 
probably never reach an Arimaa rating of 2500 like that of some of the top players, no matter how much effort I 
put in. Would Arimaa be able to attract the kind of talent found in games like Chess and Go soon enough to 
help keep the humans ahead of computers? Part of the reason Juhnke and Daligault wrote the books was to 
encourage talented players from other games to consider Arimaa. However, I have come to realize now that it 
might be easier to get a devoted strategy game player to change religions than to change the game they play.

9 SCIENTIFIC PUBLICATIONS AND A BREAKTHROUGH

The years 2009 to 2015 were a vibrant period for Arimaa program development. Not one program seemed to 
dominate the stage, and the championship crown was passed around almost every year. Various different 
approaches were tried with varying degree of success. Over thirteen academic papers, thesis and technical 
reports researching Arimaa were published during this time. The MCTS approach, which provided a 
breakthrough in Go and Havannah, were applied to Arimaa by Tomas Kozelek in 2009, Sam Miller in 2009, 
and Thomas Jakl in 2011. The Bonanza Method that had worked well for Japanese Chess was applied to 
Arimaa by Kanjanapa Thitipong, Komiya Kaneko, and Yoshiyuki Kotani in 2012. Some researchers even tried 
very unconventional approaches. Using plans, patterns, and move categories to guide a very highly selective 
search was tried by Gerhard Trippen in 2009. Modeling Arimaa using linguistic geometry was tried by José
Roberto Mercado Vega and Zvi Retchkiman Kösberg in 2009. A complete list of research papers on Arimaa 
can be found at arimaa.com/arimaa/papers.

Although most research did not lead to strong Arimaa programs, there was some very fundamental research 
going on at Harvard University, which initially did not seem to have much impact, but would eventually 
culminate to provide the breakthrough needed to win the Arimaa Challenge. It was presented in David Wu’s 
2011 thesis Move Ranking and Evaluation in the Game of Arimaa. Wu was the first to apply machine learning 
to order Arimaa moves based on the likelihood of an expert playing the move. This approach was first 
suggested by Rémi Coulom in 2007 and described in his paper “Computing ELO Ratings of Move Patterns in 
the Game of Go”. Although this approach worked well for pruning and ordering the moves to examine further, 
it took too long to execute and could only be applied at the root node of the search tree. It was not until 2015 
that Wu would find a way to apply this technique deeper in the tree using what he calls “tactical move 
generators”. Wu refers to this as a breakthrough, and it remains to be seen if this could be applied to other 
games.

10 IMPROVEMENT OF RATING

The rate at which the best programs were improving after 2009 seemed to increase slower than expected,
despite the continuing improvements in hardware and the best efforts of the developers to incorporate Arimaa 
knowledge into their programs. The top human players seemed to be about 200 rating points ahead and felt 
comfortable that they would be able to maintain the lead. Table 3 shows the ratings of the Arimaa Challengers 
and defenders over the years. The rating is the Arimaa Gameroom rating after the event to incorporate the 
performance during the event.

11 SHARP’S ENORMOUS INCREASE OF PLAYING STRENGTH

Past performance is no guarantee of future results. The warning often heard on the stock markets was quite 
applicable to Arimaa in 2015. The top humans players were caught off guard by the sharp increase in SHARP’s 
performance. The nearly 400 point increase over the previous year’s challenger could be characterized as 
nothing less than a breakthrough. Had the increase come more gradually over a number of years, the top 
players would have had time to adjust and perhaps keep up. I myself was shocked to see the result, and felt that 
there had to be some breakthrough that allowed SHARP to play this well within such a short period of time.

Congratulations to David Wu on winning the Arimaa Challenge. Your patience, perseverance and hard work 
have resulted in a major accomplishment. I did not expect it to happen just yet, and I am sure many in the 
Arimaa community feel the same way, but I am very happy to see that there may actually be a breakthrough 
that will come out of David Wu’s efforts. If this proves to be the case, then the Arimaa Challenge has been 
quite successful in achieving its goal. Even if there is no breakthrough, I am happy to see that the Arimaa 
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Challenge has resulted in so many people looking at the problem posed by Arimaa and contributing to scientific 
research on autonomous game playing.

Year Challenger, rating Defenders, rating, win-loss

2004 BOMB, 1807 Omar Syed, 2102, 8-0

2005 BOMB, 1822 Frank Heinemann, 1969, 7-1

2006 BOMB, 1563 Karl Juhnke, 2258, 3-0
Greg Magne, 2166, 3-0
Paul Mertens, 2088, 2-1

2007 BOMB, 1880, version 2005 Karl Juhnke, 2361, 3-0
Brendan M, 1898, 2-0
Naveed Siddiqui, 1703, 0-1, substituted for Brendan
Omar Syed, 1917, 3-0

2008 BOMB, 1911, version 2005 Jean Daligault, 2494, 3-0
Greg Magne, 2342, 3-0
Mark Mistretta, 2095, 1-0
Omar Syed, 1928, 2-0, substituted for Mark

2009 CLUELESS, 1953 Jean Daligault, 2471, 2-0
Karl Juhnke, 2457, 2-1
Jan Macura, 1979, 2-1
Omar Syed, 1939, 1-0, substituted for Jean

2010 MARWIN, 2053 Patrick Dudek, 2142, 0-3
Greg Magne, 2338, 3-0
Daniel Scott, 2145, 2-1

2011 MARWIN, 2066 Gregory Clark, 2236, 3-0
Toby Hudson, 2205, 3-0
Karl Juhnke, 2320, 2-1

2012 BRIAREUS, 2206 Hirohumi Takahashi, 1626, 3-0
Jean Daligault, 2427, 3-0
Eric Momsen, 1994, 0-3

2013 MARWIN, 2096 Mathew Brown, 2548, 3-0
Matthew Craven, 2018, 2-1
Greg Magne, 2335, 3-0

2014 ZILTOID, 2231 Fritz Juhnke, 2497, 3-0
Max Manual, 2228, 2-1
Samuel Schueler, 2230, 2-1

2015 SHARP, 2595 Mathew Brown, 2612, 1-2
Jean Daligault, 2170, 1-2
Lev Ruchka, 2190, 0-3

Table 3: Rating of Arimaa Challenge Participants.

12 CONTROVERSY

Just as there was controversy over the results of the DEEP BLUE vs Kasparov match shortly after it was over, so 
it was for the Arimaa Challenge match as well. After the challenge was over, it was brought to my attention 
that Karl Juhnke, who had supported the Arimaa Challenge by offering $1000 to the challenge winner, made a 
bet with Mathew Brown, the strongest and youngest of the defenders. Actually, it was structured as Karl buying 
insurance by paying Mathew $2 to receive over $200 if Mathew lost his series. The situation was made more 
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complicated when David Wu offered to compensate Mathew if he lost the series. Although David’s intent was 
to neutralize the situation by taking pressure off of Mathew, it amounted to the challenger paying a defender to 
lose the series when taken out of context. I was quite disappointed to learn about this, and if I had known about 
it before the challenge, I would have taken steps to discourage it. Although nothing could be done about it after 
the fact, I thought it would be a good opportunity to stir some controversy and have the Arimaa Challenge go 
out with a bang, by announcing that the challenge results had been invalidated for a few days.

13 IMPACT AND DISSEMINATION

Now that computers have caught up to the level of the best human players, it would be interesting to see if they 
can continue to stay ahead. My guess is that if Arimaa was able to attract enough talented players, the humans 
may be able to regain the lead temporarily before computers get so far ahead that unaided humans would have 
no chance against them. It is also very likely that computers will continue to improve much faster than humans 
and may never relinquish the lead, even temporarily. Either way I would like to see the Arimaa “Man vs 
Machine” games continue in the future. One format which I refer to as “Crush the Humans” would have the 
program that won the annual computer championship be made available online for a month, so that any human 
can play against it. Perhaps multiple copies could be made available if the necessary hardware is available. The 
human can select the side to play and the time control within interactive game limits. If the computer does not 
lose any game during the month, the developer wins the prize. Otherwise, the first human to defeat the 
computer wins the prize. However, in order to receive the prize, the human player must immediately upload a 
video showing them playing the complete game to a publicly accessible site and send the link to the event 
organizer. Such a format could also be used for game like Chess and Go, where the top human players do not 
want to publicly play the computer. This way, if they win the game they can reveal it, but if they lose it would 
remain anonymous.

RECOMMENDATION

If such challenges were organized by the ICGA, it would go a long way in promoting game AI research as well 
as sustaining and growing public interest in classical games. It should not be very difficult for an organizer such 
as the ICGA to find a university or company to sponsor a small prize for such an annual event along with some 
funds to rent the necessary hardware.
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COMPUTER ARIMAA: THE BEGINNING

David Fotland1

San Jose CA, USA

ABSTRACT

This contribution contains my personal experience with the Arimaa game. It is based on my 
communication with Omar Syed and my memories of developing the program that won the 
first five computer competitions. It also lost the human contest five times in a row. In 
Syed’s (2015) contribution the precise results are given. Finally, I will highlight the 
techniques used in Bomb, which were up to date ten years ago. In summary, the 
contribution describes how the first Arimaa program was developed.

1 THE VERY BEGINNING

The first time I heard of Arimaa or Omar Sayed was in January 2003, when Omar emailed me out of the blue. 
Omar’s email (1/18/2003) stated in part:

“On your homepage it mentions that:
Our focus is on the game of Go, because it is by far the most difficult strategy game for computers.

“That is true, but only because no one had ever attempted to design a game that was difficult for 
computers to play. Over the last several years, actually since GK lost to DEEP BLUE in 1997, I have 
been working on designing such a game and I've recently finished it.  I estimate that this game is about 
100x more difficult for computers than Go and about 1000x more difficult than Chess. My estimate is 
based on a program using a search tree and heuristic function to select the best move.  It would not 
apply to other approaches. Please check it out:

http://arimaa.com/arimaa/

“I would be interested to know what you think since you definitely are an expert in developing 
programs for games that are difficult for computers to play.”

Indeed, Arimaa looked like an interesting game to play, and Omar had succeeded is making a game with a huge 
branching factor.  Since the pieces move slowly, constructing a strategic position would take far more depth
than could be searched.  It would be quite a challenge for a computer opponent. It was a challenge I was eager 
to accept, not only because Omar was offering a $10,000 prize for the first Arimaa program to beat a strong 
human player.

2 MANY FACES OF GO

The timing of Omar’s email was fortuitous. In the late 1990’s there were several world computer Go
tournaments with big prizes, so most of my game engine development time was focused on THE MANY FACES 
OF GO. It won a major tournament in 1998 (Fotland, 2013) which led to a deal where I licensed the engine to a 
company in Japan for sale as AI IGO. Every year I had two major tournaments to prepare for, and I delivered 
an engine update to my Japanese licensee. At the time I was working at Hewlett Packard in a senior 
engineering job, and had two young children. There was no time for a big new project.

The annual FOST cup with its 1,000,000 yen first price (Fotland 2013) ended in 1999. The Ing Computer Go 
Championship had a first prize of NT$200,000, and the winner played strong humans for up to NT$40,000,000 
(over a million US dollars) (Fotland 2013). The last Ing tournament was in 2000. The 21st Century Cup was 
formed to provide a new tournament with money prizes, but its last tournament was in 2002, due to lack of 
sponsors.  

1 Email: fotland@smart-games.com
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In July 2002 I won the last 21st Century Cup, then spent a few months finishing and releasing MANY FACES OF 
GO version 11, so my customers could upgrade to this strong engine. With no major Go tournaments on the 
horizon I was available for other projects.

3 WORLD WAR CHESS

Although I am most well-known for developing THE MANY FACES OF GO, I have written engines for many 
other games. In late 1997 I wrote a chess engine for a game compilation CD. I took this three month contract 
primarily to gain expertise in alpha-beta search, planning to apply it to a highly pruned full board search in 
MANY FACES OF GO. In 2000-2001 I took another contract to build a client and server for a chess variant called 
World War Chess (King 2007). This was chess with armor, infantry, and bombers.  The rules are different from 
chess, but it uses the same board. World war chess has some unusual moves.  The Bomber moves like a queen, 
but can fly over friendly pieces.  There are three slow pieces (infantry, and two types of tanks) that can only 
move one square at a time.  But when several of the same type are in a connected line, they can move together
as a single move. For WWChess I leveraged and improved my existing chess engine. When Omar contacted 
me I already had code for a modern chess program ready to go that was flexible enough to implement different 
rule sets.

My chess engine is written in c++. It uses bit-boards for move generation and evaluation. The search is iterative 
deepening PVS negamax with null move, search extensions, and quiescence search. It has a transposition table 
and uses the killer and history heuristics for move ordering.

4 A SWEETER OFFER

In my reply to Omar I told him that I thought his prize could only be won quickly, before people learned how to 
play the game well. Arimaa’s branching factor is so high that I did not think alpha-beta search could beat 
people once the game strategy was well understood.

(1/18/2003 from Fotland)
“Part of the reason I think the prize can be won quickly has nothing to with the complexity of the 
game. Since it is a new game the human players are not as strong as they are in Chess and Go.

“It is the equivalent of writing a chess program to beat a group of people who have played chess for a 
few years without any contact with strong chess players or any of the chess literature. Chess and Go 
both have had hundreds of years of concentrated study by many people to develop strong strategies 
and tactics. None of that is available for your game.

“Your game is more complex than either of these, so I don't think I could write a strong program as 
quickly. I wish I had time to give it a try.  

He replied with a sweeter offer:
(1/19/2013 from Omar)
“You are definitely right that humans have a disadvantage here because the game is new and it takes 
people a long time to develop expertise in a game.  Also you do have the advantage that you've 
developed game engines for several games more complex than chess.  But I've made the challenge 
offer and it will stand; $20,000 if you are able to defeat the best human at the end of this year.”

5 MY COOPERATION WITH DON DAILEY

The day after I got Omar’s email, I got an email from Don Dailey saying that he had already started to write a 
program and asking me if I was going to try. I started coding the Arimaa rules the same day. I do not remember 
if it was Omar’s larger prize or competing with Don that made me change my mind.

(1/20/2003)
“Hi David,

“I decided to write an Arimaa program. I have some ideas and already have most of the move 
generation in place. The actual programming is trivial compared to chess!
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“Are you going to try?

Don”

Don offered a lot of encouragement, and shared test results so we could verify that our move generators were 
generating the same set of legal moves.  Omar had built an engine using Zillions.  Omar, Don, and I compared 
the number of unique legal moves from a starting position, and initially we each had a different number.  
Besides bugs, we cleared up a few ambiguities in the rules.

(1/20/03 from Fotland)
“For example, an enemy horse has both my camel and my elephant next to it.  I move my elephant 
away, then the horse into the elephant’s square, then the camel into the horse’s square.  The horse 
move can be interpreted either as a pull by the elephant or as a push by the Camel.

“If I see it as a camel push, then the camel must move there in the next move, so I assume that if a 
move can be either a pull or a push, that it is interpreted as a pull.

“But the same move can NOT be both a push and a pull, so if the elephant move was finishing a push 
elsewhere, then the horse move must be a push by the camel so the camel must move.”

Don and I shared some details on our early algorithms with each other.  Don wrote:
(2/5/2003 from Don)
“I'm using PVS search and iterative deepening with negamax too.  I'm not doing anything with null 
move yet but the null move assumption is probably very strong in this game.  Also, the last ply can be 
cut if the  current "static"  board  evaluation is  below  the alpha  window, because  it's almost  certain  
that the  last  guy to  move will  only improve his situation, making the  resulting search effort more or 
less wasteful.

“I have 3 generators:  

1) push/pull to trap squares.
2) push/pull to non-trap squares.
3) non push/pull moves.

“I generate moves in that order.

But I also use the "history heuristic" which gives big node reductions.

My current implementation of hh is like this:

1) History table indexed by [color][f-t] where f-t is the from and to square of the move.

2) After the best move is found at any node, I increment the table entry corresponding to the FIRST 
step made.

3) I sort the move list according to the history table. I only do this for the first step, not for all 4 steps.”

Soon Omar had an interface to allow bots to play on his web site, and soon Don’s program was up and running.  
Omar said:

(2/8/03 from Omar)
“I played Don’s bot earlier today. It did a pretty good job of trying to hold back my rabbit at the end. It 
is definitely playing better than a beginner. It is scary to think that your bots are getting into the 4th 
ply already.  They can find a lot of human errors at that level.”

My program joined his on February 20th. Omar played it twice and wrote:
(2/22/2013)
“Hey David,
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“Your bot is playing really well. It beat me the first two games I played against it.  I lost on time, but I 
think it would have won anyways.

Omar”

6 HOW TO PLAY WELL: NOBODY KNOWS

Coding an engine for a new game is very exciting and rewarding. The engine is improving very rapidly, and 
most ideas make noticeable improvements. Bugs are obvious and fixes are easy to verify. Performance 
improvements are easy to find. No one knew how to play well and the strongest players made tactical mistakes 
that could be exploited.   

Later engine development becomes a disciplined engineering effort. Changes must be carefully measured 
through self-play or test positions.  Performance must be measured, and code carefully tuned to search as many 
positions as possible. The Arimaa web site helped since it had a rating system. I put up a version with fast time 
controls called bot_speedy and got lots of good feedback from players on the site.

Arimaa has a huge branching factor, with typically 20,000 distinct legal moves in any position. This limited 
search to about 3 ply (12 steps), so my plan was to win the prize through superior tactics.  Since there were no 
strong players, I had no game records or publications to guide development of an evaluation function. I focused 
new development on trap tactics and rabbit goal-races.   

3 ply search is not enough to beat strong players, so I needed some way to extend the search. The first change 
was to deepen the search by step rather than ply.  This dramatically reduced the time for move generation and 
sorting, but required changes to the negamax framework and null move handling.  Only one of four steps has a 
change of color to move. When the color does not change, negamax is called with the same alpha and best 
bounds, and without negating the score. A null step generated null steps for the rest of the steps in the move, so 
a null step might skip one to four steps.

I was inspired by the computer chess concept of a Static Exchange Evaluator to calculate the number of steps to 
capture each piece at a trap (one to six steps, assuming no enemy moves).  This code runs once at each trap and 
looks for one of about 50 local piece configurations.  This generates many cutoffs when the current step is not 
the last step in a move.  This works well with null move, since a null move during the 3rd ply will enable a trap 
threat to be found on the first step of the 4th ply.

Once players learned to avoid blunders around traps, they won easily by sacrificing material to open a path for 
a rabbit to run across the board. I needed some way to extend the search to find threats to win. I statically
evaluated how many steps (1 to 8, or more) it will take each rabbit to reach the goal, assuming no intervening 
moves by the opponent. This is a tricky 700 lines of code, since there are many cases. This allows the search to 
find goals four steps earlier, and enables a highly pruned search to find defenses against goal threats. The mate 
search is implemented as a mode flag during quiescence search.  When a rabbit has a short path to the goal, that 
side is only allowed moves that advance toward the goal (including moves to push or pull enemy pieces out of
the way).  The other side is only allowed moves by pieces that are close enough to affect the goal.

When this was implemented, weak players could no longer sacrifice pieces to force a goal, and strong players 
complained that the program defended tenaciously against goal threats. The strong players shifted to new 
strategies that immobilized pieces, won material, and did not try for the goal until there was a large material 
advantage. For more details on bot BOMB, my Arimaa program, see Fotland (2006).

7 SEARCH DETAILS

The negamax search function takes the board, move-to-make, alpha, beta, and remaining depth (in steps).  The 
following code highlights the basic structure, but leaves out many details involving the transposition table, time 
control, killer and history tables, etc.  Phases (steps) in a move are numbered 0 through 3.
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negamax(board b, move m, int alpha, int beta, int depth) {
b.makeMove(m);
if (b.mateCheck()) { // static check for rabbit running

return mateValue();
}
// null move applies to all steps in the current move
if (m.isNull() && b.getPhase() != 0) {

if (b.getPhase() == 3)
return –negamax(b, m, -beta, -alpha, depth-1);

else
return negamax(b, m, alpha, beta, depth-1);

}
// checks for repetition and time control omitted
// hash table lookup: check score for cutoff omitted

// razoring check.
// Evaluate early if remaining steps are all the same color
if (b.getPhase() <= 2 && depth >= 1 && depth + b.getPhase() <= 3) {

if ((val = b.evaluate()) >= beta) {
return val; // cut off

}
}

int bestVal = -INFINITY; // best score found

// end of search – evaluate and check for mate or mate extensions
if (depth <= 0) {

val = b.evaluate();
if (b.evalFoundMate()) {

return mateValue(); // set to prefer shorter mates
}
// code omitted that starts or stops mate search
if (val > beta)

return val; // cutoff
if (val > bestVal) 

bestVal = val;
}

// null move if depth > 0, no razor check, no forced push
if (b.nullMoveOK()) {

if (b.getPhase() == 3)
val = -negamax(b, PASS, -beta, -beta+1, max(depth–4, 0));

else
val = negamax(b, PASS, beta-1, beta, max(depth-4, 0));

if (val >= beta) 
return val;

}

// if depth > 0 (full search) or in mate search
// try moves in order:
// hash table move
// killer 1 or 2
// history table moves 1, 2, or 3
// pulling moves
// pushing moves
// forward steps (all pieces, in order of bits in bitmap)
// left or right steps
// backward steps
// if in mate search, sort moves by distance to the rabbit
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if (depth > 0 or b.matesearch())
b.genMoves();

// if depth < 0 and not mate search, Quiescence moves only
// complete a push
// capture a piece in a trap
// save a piece threatened with capture in a trap
else

b.genQuiescenceMoves();

int b1 = beta; // PVS bound
foreach (move tryit in b.generatedMoves) {

if (pruneMove()) {
// prune if this step undoes the previous step
// unless there is a pull or push involved
continue;

}
if (b.getPhase() == 3) {

val = –negamax(b, tryit, -b1, -alpha, depth-1);
if (val >= b1 && val < beta) {

// search again with full window
val = -negamax(b, tryit, -beta, -alpha, depth-1);

}
} else { 

val = negamax(b, tryit, alpha, b1, depth-1);
}
if (val > bestVal) {

if (val > beta) {
return val; // cutoff

}
bestVal = val;
if (val > alpha) {

alpha = val;
if (b.getPhase() == 3 && depth > 0) {

// adjust PVS bound only when player changes
// no PVS during quiescence search
b1 = alpha + 1;

}
}

}
return bestVal;

}

8 THE FIRST HUMAN vs COMPUTER COMPETITION

The first human versus computer competition was about a year later, in early 2004. My program, BOMB, won 
the computer-computer challenge, with one loss to Don Dailey’s program, OCCAM. Arimaa proved popular 
enough that people developed good strategies and I was not able to win a single game against Omar.

I did not think I would be able to keep up with the continuing human progress. For the 2005 championship I did 
a little work on the rabbit mate evaluation a few months before the competition, and then stopped working on it 
entirely. Omar asked if BOMB could be entered in future championships and I agreed. At the time BOMB was 
considerably stronger than other programs so I agreed to publish a description of my approach, with much 
encouragement from Jaap van den Herik (see Fotland, 2006).

9 IDEAS ON ARIMAA IMPLEMENTED IN GO

In 2006 and 2007 I applied a full board alpha-beta search to THE MANY FACES OF GO, and got a significant 
improvement in strength, from about 8 kyu to 5 kyu. My experience with Arimaa was very helpful there. Then 
in 2007 Monte Carlo Tree Search became the algorithm of choice for computer Go. I spent all of 2008 
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rewriting MANY FACES OF GO using MCTS, then 2009 releasing and supporting a new version. This left me no 
time to return to Arimaa.

10 CONGRATULATIONS

I felt that some breakthrough in machine learning or new algorithms would be required to win Omar’s prize. 
The search would need to be much more selective to reach the required depths. David Wu’s win this year is 
very impressive, since he had a huge increase in strength within an alpha-beta framework. He deserves sincere 
congratulations for his achievement.
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DESIGNING A WINNING ARIMAA PROGRAM

David J. Wu1

ABSTRACT

In 2015, twelve years after the creation of the Arimaa Challenge, the program SHARP won the
Challenge, defeating three strong human opponents with a total of 7 wins and 2 losses. This paper
describes the design of the winning agent and the improvements and innovations that led to its recent
success. Among these are several innovations greatly increasing the quality and selectivity of the
search and several major improvements to the positional evaluation.

1. INTRODUCTION

Arimaa is a game invented in 2002 by computer engineer Omar Syed. According to Syed, the original motivation
for Arimaa came from the defeat of the human World Champion in Chess, Garry Kasparov, in 1997 by IBM’s
DEEP BLUE (Syed and Syed, 2003). Syed set out to design a game playable using a Chess set that would be as
fun and interesting for human players and yet be more difficult for computers. The result was a fascinating new
board game called Arimaa. By designing Arimaa, Syed hoped to encourage new interest and research in artificial
intelligence for strategic games (Syed and Syed, 2003).

To this end, every year an event known as the “Arimaa Challenge” has been held, in which the top computer
program using common desktop hardware plays a series of matches against three different players chosen that
year to “defend” the Challenge. Since the beginning of the Challenge in 2004 up until the previous year, despite
significant progress in computer Arimaa, human players have convincingly defeated the top programs each year.

However, to everyone’s surprise in 2015 the tables turned. In this year our own program SHARP swept both the
Computer Championship and a preliminary blitz tournament undefeated with 18 wins in a row, outperformed
the strongest other competing program in preliminary screening matches against human players with a record of
28-2, and proceeded to defeat the challenge defenders 7-2, winning the Challenge!

Such a strong performance was both exciting and unexpected, and judging from the games, likely some luck was
necessary. But in retrospect, the result is not entirely surprising. Since its first win of the Computer Championship
in 2011, SHARP has improved greatly, especially in the last two years. In self-play testing against older versions
at blitz speeds, it improved at least 200 Elo rating points going into the 2014 competition. It then leapt far ahead
of all other programs by gaining an additional 400 Elo rating points by the start of the 2015 competition2. If not
already stronger now, SHARP is at least close to being on par with top players, and it seems that there is still
plenty of room for further improvement.

The goal of this paper is to explain the design of SHARP and to present the most significant innovations and
improvements responsible for its jump in strength in the last two years. In Section 2 we describe the game
Arimaa and some of the properties that have made it computer-resistant. In Section 3 we give an overview of
other work and research that has been done in Arimaa. In Section 4 we present the basic algorithms used in
SHARP and in Section 5 the recent search improvements that made its success possible. In Section 6 we describe
the development and design of the positional evaluation. Finally, in Section 7 we present some conclusions and
possibilities for future work.

1email:lightvector@gmail.com
2In winning chances, 200 Elo implies about 3:1 odds, and 400 Elo implies 10:1 odds, quite a large improvement.
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2. THE GAME

Below we describe the rules of Arimaa (2.1) and we briefly discuss some of the properties of the game that have
made it computer resistant (2.2).

2.1 Rules

Arimaa is a deterministic two-player abstract strategy game played on an 8 x 8 board, the two players being Gold
and Silver. The rows and columns on the board are labeled 1. . .8 and a. . .h, respectively, as shown in Figure 1.
Below we describe five parts of the rules of Arimaa, including the move notation.

2.1.1 Setup

Prior to normal play, Arimaa begins with a setup phase where both players place their pieces in any desired
arrangement within their starting two rows with Gold placing all pieces first. In order of decreasing strength,
each player has 1 Elephant, 1 Camel, 2 Horses, 2 Dogs, 2 Cats, and 8 Rabbits.

Figure 1: Example game position, just after the setup phase.

2.1.2 Movement

Following the setup phase, play begins and players take turns making moves of up to four steps, with Gold
moving first. A step consists of selecting a piece of one’s color and moving it to an empty adjacent square, that
is, left, right, forward, or backward. All pieces move identically this way with one exception: rabbits may not
move backward.

Pieces are differentiated in strength in that pieces can push or pull weaker opposing pieces using two steps at a
time, as shown in Figure 2. Pushes can displace weaker opposing pieces into any adjacent empty square, and
similarly pulls can displace weaker pieces from any adjacent square into the one just vacated. Simultaneously
pushing and pulling with the same piece is illegal.

Additionally, stronger pieces can prevent weaker pieces from moving by freezing them. Whenever a piece is
adjacent to a stronger opposing piece and is not defended, that is, when it has no friendly piece adjacent, then it
is frozen and cannot move. (It can still be pushed or pulled by the opponent.)

Players must change the board position on their turn and also may not make any move that would result in a
third-time repetition of the position and player-to-move.
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Figure 2: A silver horse steps down, pulling a gold rabbit. A gold elephant pushes a silver camel to the right.

2.1.3 Capture

The squares c3, c6, f3, and f6, are trap squares. Whenever a piece is on a trap square but is not defended, it is
captured and immediately removed from the board.

Figure 3: Examples of capturing and freezing. Upper-left: If the gold elephant pushes the silver dog, it captures
the silver rabbit on the trap at c6. Upper-right: The silver horse at f6 can capture the gold rabbit by stepping left
or right while pulling the gold rabbit onto the trap. Lower-left: The rabbit on a2 is frozen by the adjacent gold
camel. Lower-right: The g2 rabbit is not frozen by the gold dog because it is guarded by the silver cat.

2.1.4 Game Objective

A player scores a goal and wins the game when one of that player’s rabbits ends the turn on the opponent’s back
row, on the opposite side of the board3. A threat to win the game on the next move in this way is called a goal
threat.

2.1.5 Notation

Arimaa move notation is used in a small number of places in this paper. For reference, it consists of tokens such
as Ee2n indicating the piece (E ∈ {E,M,H,D,C,R,e,m,h,d,c,r} uppercase for Gold and lowercase for Silver), the

3Much more rarely, a player can win by immobilization if the opponent is unable to make any legal move on their turn, or by elimination
if the all of the opponent’s rabbits are captured.
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originating square (e2), and the direction of movement (n ∈ {n,s,e,w,x} with x indicating a capture). An example
move in the middle of a game might look like: Ef4n Ef5w cf6s Hg4n.

2.2 Computer-Resistance

Why is Arimaa computer-resistant? We can identify two major obstacles.

The first is that in Arimaa, the per-turn branching factor is extremely large due to the combinatorial possibilities
produced by having four steps per turn. Even after identifying equivalent permutations of steps as the same move,
on average there are about 17000 legal moves per turn (Haskin, 2006). This is a serious impediment to search.

Obviously, a high branching factor alone doesn’t imply computer-resistance, particularly if the standard of com-
parison is with human play: high branching factors affect humans as well. However, Arimaa has a property
common to many computer-resistant games: that “per amount of branching” the board changes slowly. Indeed,
pieces move only one orthogonal step at a time. This makes it possible to effectively plan ahead, cache evaluations
of local positions, and visualize patterns of good moves, all things that usually favor human players.

The second obstacle is that Arimaa is frequently quite positional or strategic, as opposed to tactical. Capturing
or trading pieces is somewhat more difficult in Arimaa than in, for example, Chess. Moreover, since the elephant
cannot be pushed or pulled and can defend any trap, deadlocks between defending elephants are common, giving
rise to positions sparse in easy tactical landmarks. Progress in such positions requires good long-term judge-
ment and strategic understanding to guide the gradual maneuvering of pieces, posing a challenge for positional
evaluation.

3. HISTORY AND EARLIER WORK

Despite these difficulties with branching factor and evaluation, the strongest Arimaa programs have generally re-
sembled strong Chess programs in design, using alpha-beta search in combination with a slew of other enhance-
ments and carefully-tuned evaluation functions (Zhong, 2005; Fotland, 2006; Cox, 2006). Developers Fotland
and Zhong were among the first to do well with this approach and detailed many basic ideas used by nearly all
strong Arimaa programs today, such as static capture and goal detection. Fotland in particular pioneered so much
of the early groundwork that despite abandoning work on Arimaa after 2005, his program BOMB continued to
win every Arimaa Computer Championship up through 20084(Syed and Syed, 2015b). Since then, the Computer
Championship has been lively, with the title trading back and forth between a variety of ever-improving bots
every year from 2009 onwards. In every case, the winning program was a “traditional” Chess-like searcher.

A few others have tried alternative approaches without significant success. These include Kozelek (2009) and
Miller (2009), who made attempts to apply Monte-Carlo tree search in various ways. In another alternative but
unsuccessful approach, Trippen (2009) investigated a pattern-matching and plan-based method for performing
extremely selective search, examining only a tiny number of moves (as few as five!) in each position.

More recent and successful work has focused on ways of learning better move ordering or evaluation for use
within the traditional alpha-beta search paradigm, including our own work on learning move ordering from expert
game records (Wu, 2011) and similar other work (Vivek Choksi, 2013). In an exciting result, Hrebejk (2013)
demonstrated that it is also possible to learn a strong evaluation function from expert game records . The following
year, Hrebejk’s program DRAKE, while not quite a contender for the top, performed fantastically well given its
status as a newcomer.

The successes of these later approaches and the steady improvement in computer strength after 2009 made it
a good bet that the traditional alpha-beta search paradigm would eventually be sufficient. And indeed, this
is the path that SHARP followed. We begin next in Section 4 with an overview of the basic algorithms and
enhancements taken from this paradigm, and then in Sections 5 and 6 elaborate on how we navigated the two
obstacles of branching factor and strategic evaluation in Arimaa - the former via new enhancements to the search
greatly increasing its efficiency and selectivity, the latter via determined engineering and a robust development
methodology for improving the evaluation function.

4Even today, surpassing BOMB is viewed as a noteworthy achievement for any new developer!
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4. BASIC SEARCH ALGORITHMS AND ENHANCEMENTS

SHARP follows the same fundamental design as strong Chess programs, using an iterative-deepening depth-
limited alpha-beta search to explore the game tree and compute its minimax value out to increasing depths (see
4.1). The search is augmented with a variety of heuristics and enhancements for ordering, extending, reducing,
and pruning to increase its efficiency and focus it in important parts of the tree (see 4.2 and 4.3). At leaf nodes, a
carefully designed evaluation function is called to evaluate the game state, taking into account a large variety of
positional features (described later in Section 6).

4.1 Alpha-Beta Search

In alpha-beta search, one computes the minimax value5of a position and finds a move that achieves that value
by recursively finding the minimax value of each move in a depth-first manner and taking the maximum of the
values returned for each move, negating whenever the side-to-move changes6. The algorithm’s name derives
from an optimization: it also accepts an interval (α, β) and returns from a node immediately if it can prove that
its minimax value is outside the interval. The interval is passed down recursively, and after each move is searched
(letting x be the value returned), two rules are followed to apply and update the interval:

1. Beta cutoff: If x >= β, return immediately, since the maximum move value must be >= β and outside
the window (α, β).

2. Improving alpha: Else set α := max(α, x) when recursing on the remaining moves. A move value of x
means that values <= x can no longer affect the maximum move value at this node.

The efficiency of alpha-beta search improves greatly if it searches better moves first, obtaining beta cutoffs and
stronger alpha-beta bounds earlier. As a result, alpha-beta is almost always used with a heuristic move ordering
function to sort moves in order of likely quality. Since searching the entire game tree is infeasible, one stops at
a limited depth and calls a heuristic evaluation function to estimate the value of the position based on features of
the board state. In actual timed play, one usually also uses iterative deepening - iteratively re-searching the same
position with increasing depth limits - to run until the desired amount of time is consumed.

It is worth noting that a variety of subtle details in the implementation of these algorithms can make a significant
difference in performance. Like other strong programs, SHARP carefully manages these details. To give two
examples:

• Upon a timeout during iterative deepening, the results of the interrupted search are used. In particular, if
that search finds any move superior to the first move (which by ordering is always the best move of the
previous iteration), that move is chosen. This gains a significant fraction of a ply in average effective search
depth.

• When sorting moves for move-ordering, often a O(n2) selection sort is better than a more asymptotically-
efficient sort. Selection sort can be done incrementally, eliminating the need to sort more than a few
elements if a beta cutoff occurs early.

One other detail is that SHARP defines the depth of a search in steps rather than in moves. That is, it uses a
formulation of the game where each ply of the search is a single step and the side-to-move only changes every
four ply. Because of Arimaa’s high branching factor, this improves performance by avoiding large lists of moves.
However, as part of one of the recent innovations contributing to SHARP’s success, the search also does not
strictly adhere to recursing one step at a time. These details are elaborated on below in Section 5.4.

5The minimax value is the best result that the player-to-move can force from that position with optimal play assuming the opponent
responds optimally.

6This is the “negamax” formulation of minimax search, which is the formulation virtually always used in practice.
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4.2 Standard Enhancements

SHARP uses a variety of search enhancements that are standard in alpha-beta searchers for other games, notably
Chess. We list and describe seven specific enhancements below.

4.2.1 Transposition Table

In Arimaa, different sequences of steps or moves that lead to the same final game state, or transpositions, are
common. Therefore, a large hashtable, or transposition table is used to cache results to avoid repeating work7.
As is usual, the contents of the table are preserved between top-level iterations of the search, and the best move is
also stored so that in subsequent iterations that move can be searched first to improve move ordering. In SHARP,
the table also caches the values of direct calls to the evaluation function8.

In SHARP, transposition table entries are 128 bits, composed of 64 bits recording the full hash key, 32 bits for
the best move, 21 bits for the evaluation, and 11 bits for the search depth and for flag values indicating the kind
of result stored. In the event of a collision, a new entry always overwrites the existing entry. This is the simplest
possible replacement scheme. A more sophisticated replacement scheme, such as a bucketed scheme based on
entry age or depth, might be an avenue for future improvement.

4.2.2 Killer Moves

In wide variety of games, a heuristic that improves move ordering amazingly well is to guess that a move that
performs well in one position will, if legal, be good in other positions. Accordingly, the killer move heuristic
records a move whenever it causes a beta cutoff and ranks that move early in the ordering at any subsequent node
at the same ply-level of the tree (Marsland, 1986). In Arimaa, this heuristic alone improves the speed of search
by a factor of tens or hundreds or more depending on the depth of the search.

SHARP tracks 8 killer moves at each ply (2 per ply within the quiescence search), evicting older killers to make
room for newer ones according to a FIFO (first-in, first-out) scheme. Unlike standard practice in Chess bots,
killer moves are allowed to be captures.

4.2.3 History Heuristic

Another technique for move ordering based on a similar idea is known as the history heuristic. At the start of the
search, a table with a counter for every possible move is initialized. After searching each node, the best move at
that node has its counter incremented, and the values of these counters are used to order future moves (Schaeffer,
1989). Whereas the killer move heuristic captures tactics common to multiple local branches of the search, the
history heuristic captures broader trends across the entire search about what moves tend to be better or worse.

Since in Arimaa a table of all possible legal moves would be too large and sparse, SHARP uses a table indexed
only by the first step of the move (56 * 4 = 224 possibilities), or the first two steps for pushes and pulls (approx.
56*4*4 = 896 possibilities). A separate table is maintained for every ply in the search.

4.2.4 Quiescence Search

A depth-limited tree search will often return bad results because near the leaves, it will often misevaluate useless
and losing threats as good because the search will end without the opponent having turns to refute these threats.
This and similar problems are referred to as the horizon effect.

A well-known technique to fix this is to perform a quiescence search at leaf nodes, where the search is extended
so long as the position appears to be tactically unstable (e.g. has a hanging piece), and to limit the cost of doing

7Note that in alpha-beta, frequently the result of a search is not an exact value, but rather an upper or lower bound. This necessitates care
in determining whether a cached result is sufficient to prune the search of a repeated node when alpha-beta bounds have changed.

8This not always done in Chess programs. In SHARP, the evaluation function is by far the most costly part of the program, making it a
clear win to cache it.
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so, by examining only moves likely to resolve the instability (e.g. capturing moves) (Marsland, 1986).

In Chess, simply searching heuristically-promising capturing moves is already quite good, making quiescence
search easy to implement. Most bad tactics in Chess that falsely appear favorable with shallow depth, such as
capturing a defended piece, are refuted by a capture, such as recapturing with the defender.

By contrast, in Arimaa, many bad tactics are not simply refuted with captures. In practice, resolving tactical
positions frequently involves determining whether a piece can be defended in four steps or whether an effective
counterthreat can be made. However, the branching factor makes it difficult to include enough such moves
without exploding the size of the search tree and degrading performance.

Because of this, SHARP, atypically compared to Chess programs, uses a quiescence search that is itself severely
depth-limited. The quiescence search is never longer than 3 moves (12 steps). To further limit branching, only
the first layer generates the full variety of moves needed to resolve common tactics, with deeper layers being
more restricted. While not ideal, these choices strike a balance between performance and tactical strength.

The following describes the classes of moves generated in each layer of the quiescence search:

• Layer 0 (if initially 1-3 steps left): Goal defense, capturing moves, rare situational moves9, goal threats,
capture defense, capture threats, pushes and pulls of trap defenders, other “tactical” moves.

• Layer 0 (if initially 4 steps left): Goal defense, capturing moves, rare situational moves, goal threats,
capture defense.

• Layer 1 (next 4 steps): Goal defense, capturing moves, rare situational moves.

• Layer 2 (next 4 steps): Goal defense, capturing moves, rare situational moves. Only invoked if layer 1
consumed all 4 steps.

4.2.5 Extensions

Aside from quiescence, it can be beneficial to extend the search in other situations. SHARP’s extensions are
simple. It extends the search depth by 1 step whenever a goal threat is played for which the minimum defense by
the opponent requires at least 2 steps, and by 2 steps if the minimum defense requires at least 3 steps.

4.2.6 Late Move Reduction

Just as it is useful to extend the search in some cases, it is often useful to reduce the search depth of a move. With
an effective move ordering, moves late in the ordering are unlikely to be good and therefore usually a waste of
time to search. Late move reduction decreases the time spent on these moves by reducing the depth remaining
by more than one ply when searching them, although if the move actually does appear to be good, the move
is re-searched with the normal depth to verify the result (Romstad, 2007). One can view reduction as a “soft
pruning” that doesn’t entirely eliminate the cost of searching a move but mostly does so and avoids errors that
would result from pruning it entirely. This technique is a key component in many strong Chess programs today.

Unfortunately, effective late move reduction is difficult in Arimaa because sufficiently effective move ordering is
difficult. In the past, we have had at most limited success using this technique to improve the search. We also
know of no other developer or published result so far that has mentioned any success with late move reductions
in Arimaa10.

However, in one of the biggest improvements for 2015, SHARP now does perform late move reduction with great
effectiveness. This is due to the discovery of new and effective ways to identify good moves and improve the
move ordering in Arimaa, which we will discuss further in Section 5.

9A few types of moves are generated only in special kinds of board positions according to various heuristics to fix situation-specific
weaknesses, such in “elephant blockade” situations.

10Although, some authors have presented some methods for pruning, such as Zhong, who described a method involving the dependency
structure of moves (Zhong, 2005) that is now used by many other Arimaa bots.
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4.2.7 Multithreading

As with many other programs, SHARP takes advantage of multiple cores on a machine with a multithreaded
implementation of alpha-beta. The algorithm used is conceptually similar to the “Dynamic Tree Splitting” algo-
rithm developed for Chess and described by Robert Hyatt (1994). However it differs in that its communication
methods are far simpler - rather than signaling other threads to request splitting of work, threads simply operate
on a shared representation of the game tree, with operations synchronized with locks at each node.

As is typical with efficient multithreaded alpha-beta search implementations, the details of this implementation
are fairly complex, and we refrain from describing them here.

4.3 Standard Arimaa-Specific Enhancements

SHARP also implements several Arimaa-specific search enhancements used by most other strong Arimaa pro-
grams. We list and describe three of them below.

4.3.1 Static Goal Detection

With four steps per move in Arimaa, it’s nontrivial to check whether the player-to-move can win by scoring a goal
on the current turn. Naively, doing so would appear to require a four-step search. However, as first described by
David Fotland and elaborated on by Haizhi, it’s possible to check this more efficiently by enumerating the classes
of patterns that would allow a goal in four steps and writing specialized code (such as a decision tree) to directly
determine whether one of these patterns is present on the board (Zhong, 2005; Fotland, 2006). While there are
many patterns, there are few enough that enumerating them is barely feasible, and testing them directly provides
a huge speedup over a search11.

SHARP contains several thousand lines of code dedicated to testing whether goal is possible in up to four steps.
The resulting code is fast enough that it can be called even on leaf nodes with no noticeable cost to performance,
extending the effective search depth by a full four steps for goal threats in the deep endgame.

4.3.2 Static Capture Generation

For similar reasons, all strong Arimaa programs contain code for statically detecting whether a piece is capturable
and for generating capturing moves. In SHARP, static capture generation is used in quiescence search and to
improve move ordering.

4.3.3 Goal Relevance Pruning

SHARP also uses a technique first mentioned by Fotland and used in his early championship-winning program
Bomb - when a goal threat is present on the board, moves that are too far away to defend it or to interact in
dependencies with defending moves can be pruned (Zhong, 2005). As Fotland did not describe his method in
detail, likely our implementation is different, and we describe it here:

Define a set of steps S as relevant to a goal threat if for every game state reachable by a move that stops the goal
threat, at least one move reaching it begins with a step in S. Then, one can restrict move generation only to steps
in S without any loss of non-losing moves.

The task is then to choose S as small as possible. The idea is that if the opponent threatens goal, S can be reduced
to only a local set of steps that do prevent it or that due to local dependencies must be played before steps that
would prevent it. Farther-away steps can be pruned because even if desirable, they can always be played later
after the goal threat is dealt with.

11If it’s not obvious why, consider the 1-step case. Whereas a search might involve generating and trying potentially dozens of steps, a
direct test consists only of checking if there is an unfrozen rabbit on the 7th rank with an empty square in front, doable in just a few bitboard
operations.
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In general, given a goal threat, if the player to move has n steps left, all steps involving only squares more than
3(n − 1) away from any squares involved in the goal threat (including squares necessary for unfreezing or trap
defense for the goal threat move to be legal) can be excluded from S. Due to interactions involving the trap
squares, this bound is tight in the general case, as shown in Figure 4.

Figure 4: With 4 steps remaining, the step Mf1n, involving a square 3(4−1) = 9 squares away from b7 (a square
that if occupied could freeze the gold rabbit), cannot be pruned as irrelevant because it is part of the unique move
Mf1n He3w Dc4n Cc7w that both prevents Gold’s goal threat Ra7n and avoids sacrificing any pieces.

However, one can almost always restrict S much further. The “radius of relevance” can only expand by three
squares per step as in Figure 4 around a trap with a singly-defended piece on that trap. Otherwise, one can use a
radial bound of 2(n− 1), or if freezing/unfreezing of pieces is irrelevant, only n. Due to a player’s own blocking
pieces occasionally interfering with ways to prevent a goal, often steps even closer than n − 1 squares can be
pruned, as shown in Figure 5.

Figure 5: With 4 steps remaining, the step de7w, involving a square only 2 squares away from b7, can still be
pruned as irrelevant. Silver’s own rabbits prevent the dog from blocking or freezing the gold rabbit in 4 steps.

SHARP contains a couple hundred lines of bitmap-based code that takes advantage these details to compute a
small S, so that when a goal threat is present, most steps can be pruned as irrelevant12. In the cases where a goal
is actually unpreventable, this greatly speeds up the proof, and otherwise still serves to reduce transposition table
load and search overhead in the endgame.

12If the goal threat is actually unstoppable, S = {} by definition is a possible relevant set. And in fact, sometimes SHARP’s local bitmap
analysis is tight enough to generate the empty set for S and directly prove that the goal is unstoppable.
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5. INNOVATIONS AND IMPROVEMENTS IN SEARCH

In just the last two years, SHARP has gained more than 600 Elo points in blitz games against its older versions13.
Some of the gains were due to a plethora of minor changes and refinements, and some were due to large perfor-
mance optimizations. However, a significant part was from a few key innovations directly aimed at solving the
obstacle of Arimaa’s large branching factor, one of the two major obstacles to strong computer play in Arimaa.
The common thread between these innovations was improving the search’s ability to order and filter good moves
out from the thousands of other random and useless moves possible in any typical Arimaa position. We describe
four innovations in 5.1 to 5.4.

5.1 Bradley-Terry Root Move Ordering

SHARP continues to use and benefit greatly from a move ordering function that we initially developed in 2011,
detailed in Wu (2011). While not developed in the last two years unlike the other improvements discussed below,
we present it again here due to the amount it continues to contribute to the playing strength.

This move ordering function is the result of training a slightly generalized Bradley-Terry model over thousands
of expert Arimaa games to learn to predict expert players’ moves. A Bradley-Terry model models the winner of
a competition between two agents i and j probabilistically as:

P (i wins) =
γi

γi + γj

where γi and γj are model parameters representing the “strengths” of i and j.

We can generalize this both to teams of agents and to competitions between more than two agents or teams by
defining the strength of a team of agents T ⊂ [1, ..., n] to be:

γ(T ) =
∏
i∈T

γi

And given competing teams T1, ..., Tn, modeling the probability that Tj wins to be:

P [Tj wins] =
γ(Tj)∑n
i=1 γ(Ti)

We apply this model to predict expert moves by considering each position in an expert game to be a “competition”
between the available moves, where the winner is the move actually played. Each move is a “team” of the various
features associated with that move, where the possible features range from things like “moved a silver horse to
d4” to “captured an opponent’s horse” to “improves a heuristic trap-defensiveness score for c3 by 5 points”.

Given a large number of training games, we then perform a maximum likelihood estimation to choose the model
parameters γi, i ∈ [1, ..., n] where γi is the “strength” of the ith possible feature, that maximize the likelihood of
the data given the model14. The resulting model assigns to each move in a position a probability that the move
would be chosen by an expert player. This can then be used for move ordering by ranking all moves in order of
most likely to least likely.

Using a set of several thousand binary features, including features indicating source and destination and piece
type, pushes and pulls, captures and goals, capture and goal threats and defense, trap defense, step dependency
structure, and a few other types of features (see Wu (2011) for a more detailed list), and training on several
thousand rated games by players rated 2100 or higher on arimaa.com, we obtain extremely good move prediction.
The resulting move predictor captures the expert moves within the first 1% of the move ordering more than 80%
of the time, and within the first 20% of the ordering more than 99% of the time!

At the root node, SHARP uses this move ordering function with great effectiveness. The search almost always
finds a good move rapidly, particularly when the former best move is proven unsound on an iteration. Further-
more, with so few expert moves occurring past the first 10% or 20% of the ordering, it can reduce aggressively

13Implying winning chances of around 97%!
14One can also take logs, defining δi = log γi. This reveals that we are effectively performing a type of multivariable logistic regression

with a linear model.
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N 1 2 5 10 100 1000 1% 5% 10% 20% 40% 60% 80%
Expert% 15.0 22.5 34.2 44.4 78.3 96.8 81.0 94.4 97.5 99.2 99.8 100 100

Table 1: Out-of-sample percentage of expert moves falling within the top N moves of the root move ordering
as of 2015, for different values of N. Test set is 21K game positions from players rated 2100+ on arimaa.com.
Average branching factor was 16567.

with little risk of reducing good moves. All moves past the approximately first 10% of moves are reduced by 1
step and moves past the first 20% are reduced by 2 steps, gaining a large speedup.

Unfortunately, the resulting move ordering function is far too slow to be applied except at the root node. With the
current implementation, ranking and ordering all legal moves in a typical position takes about 0.1 seconds, which
is far too slow to apply deeper in the search tree.

Despite that, the success of this technique served as a proof of concept back in 2011 that it was possible to filter
the set of legal moves down to only a tiny subset with hardly any loss of good moves based on only local features
and properties of those moves. The knowledge that this was possible led to experimentation with many other
ideas to see if something similar could be done with enough speed to be used within the search tree instead of
only the root. Ultimately, this was what gave rise to the biggest improvements in 2014 and 2015.

5.2 Move Generation and Ordering Within-Tree

Whereas the method above solved the problem of move ordering and pruning at the root as early as 2011, it took
until 2015 for SHARP to acquire similarly-effective methods suitable for use within the search tree.

The following list describes the current move generation and ordering structure for the main (non-quiescence,
non-root) tree search. At each node, SHARP generates and searches the following moves in order from top to
bottom16:

1. Transposition table move (if available)

2. Killer moves 1-8 (if legal)

3. Capture moves (ordered by size of piece captured)

4. Tactical moves (ordered by history heuristic + movetype17)

5. Transposition table move prefix (first step, push, or pull only) (depth reduced by 1 step)

6. Other pushes, pulls, and single steps (ordered by history heuristic + movetype) (depth reduced by 1 step)

The key breakthrough was the development of a set of “tactical move generators”, item 4 in the above list, which
serve largely the same purpose as the Bradley-Terry ordering model for the root. They produce a set of “tactical”
moves that, despite only amounting to a few percent of the legal moves in a position on average, contain a large
fraction of the likely valuable moves in a position, enabling reductions of the rest.

Of particular note is the degree to which moves can be reduced. Each step, push, or pull in items 5 or 6 is reduced
by only one step, but this reduction occurs at each level of recursion. As a result, moves composed entirely of
steps that fail to be generated by earlier items (most moves), will be reduced by as many as four steps over the
up-to-four levels of recursion for that turn!

A last thing to note is that the generated move list, rather than only containing single steps or only full moves,
contains a mix of partial moves of all different lengths, mixing single steps together with two-step pushes and

15Having the best move almost always show up in the first few percent of searched moves also synergizes well with the minor detail in
Section 4.1 about using the results of an interrupted search.

16In the presence of a goal threat, item 4 in this list is skipped, the moves from item 6 are generated using goal relevance pruning, and no
reduction in depth is performed.

17A minor Arimaa-specific heuristic taking into account the direction and type of a move is used when the history heuristic is near zero
and fails to distinguish moves.
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pulls and potentially even longer moves, such as capture and tactical moves. This design choice itself is actually
another major recent improvement, and also one of the key factors enabling the effectiveness of the late move
reduction and boosting the gains from move ordering.

We describe both the tactical move generation and this design choice further in the next sections.

5.3 Tactical Move Generation

The within-tree counterpart to the Bradley-Terry root move ordering model, tactical move generation was perhaps
the most significant single innovation in SHARP’s search in 2015. It consists of a large set of move generators
that generate a small set of “tactical” moves most critical and likely to be good in a position. These include the
following classes of moves.

• Up to 4-step pushes and pulls of opponent’s pieces on a square adjacent to a trap.

• Pushes and pulls of opponent’s pieces that are heuristically likely to threaten them.

• Moves that add defenders to “poorly-defended” traps.

• Moves that unfreeze and/or run-away own pieces that are threatened with capture.

• Moves that freeze “important” opposing pieces.

• Steps around threatened pieces that are heuristically likely to block runaway attempts.

• Up to 4-step moves of the elephant that end the elephant on “useful” squares.

• Moves that match a variety of patterns for severe goal threats and/or are likely forced wins-in-2.

• Many more classes of moves involving further kinds of tactical conditions and patterns.

The design of these generators was directly motivated by the performance problems of the root move ordering.
The root move ordering suffers in performance because it is “retroactive”. It requires generating legal moves,
playing them out, and sorting them after-the-fact. This is precisely analogous to the way that checking for 4-step
goal or capture by searching and testing possible moves is far slower than a direct pattern-based check. It stood
to reason that the performance of feature-based move ordering could be improved the same way - by directly
generating candidate good moves in a forward-looking manner.

Just as with the Bradley-Terry model, we used data from expert games heavily. However, it became obvious early
on that including all the kinds of good moves that strong Arimaa players play would be counterproductive. Often
good moves in Arimaa are “quiet” moves, where there is no urgent fight and the precise choice of move does not
make a major tactical difference. In these cases, the set of moves generated would need to be quite large to have
a significant change of including the move actually played by an expert. And moreover, quiet moves are not ones
that would benefit much from special search, precisely because of the absence of major tactics.

Therefore, rather than the obvious idea of maximizing the proportion of expert moves generated, we instead
minimized the amount by which SHARP’s evaluation of the best move produced by any generator was worse than
SHARP’s evaluation of the expert move18. In a bootstrapping fashion, this leveraged the program itself to judge
when an expert move was tactically critical instead of merely one of many reasonable moves.

The development and testing cycle followed consisted of five steps.

• By hand, look at positions with large evaluation differences and identify the most common kind of critical
move or tactic not being generated.

• Write a move generator that generates that class of moves.

• Observe that the generator is too inclusive and increases the branching factor too much, or that it is too
restrictive and fails to produce enough instances of that class of moves.

18Treating the difference as 0 if SHARP believed a move generator’s move was better than the expert move, and also capping it at 6000
millirabbits if it was worse by more than that. Evaluation consisted of a quick 5-step-deep search.
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• Iterate on and refine the move generator and the heuristics used until it generates enough of the target class
of moves while increasing the total number of legal moves generated by all generators by an acceptably
small amount.

• Add the new move generator and repeat.

The results were a huge success. On average, the resulting set of move generators is capable of capturing about
97% percent of the evaluation difference between expert moves and passing, giving up an average of merely about
6 centirabbits per move19, while only generating about 3% percent of all of the legal moves when run recursively
over the course of the four steps of the turn to produce a complete move.

In the search, the presence of these move generators provides two major benefits. Just as with the root ordering,
because of the effectiveness with which they identify critical moves, they allow aggressive reductions of all other
moves. Secondly, some of them are used in the top layer of quiescence search, providing 1-4 steps of extra tactical
depth at minimal cost. Adding these generators immediately gained 80 Elo rating points in self-play testing, the
largest gain any single change to the search has produced in the last several years.

5.4 Game Formulation and Search Structure

The other major innovation in SHARP’s search is a design choice that relates to the fundamental structure of the
search. With four steps per move in Arimaa, there are two potential formulations of the game for the purposes of
search:

• Movewise formulation: Each ply or recursion level in the search consists of a normal up-to-four-step legal
move. The side-to-move changes every ply. Branching factor ≈ 10000.

• Stepwise formulation: Each ply or recursion level in the search consists of a single step. The side-to-move
changes only every 4 ply. Branching factor ≈ 30.

Multiple authors have discussed the tradeoffs between these two formulations in earlier work, often favoring
the stepwise formulation due to the overhead of generating and sorting large arrays of moves in the movewise
formulation (Zhong, 2005). Among other things, generating tens of thousands of moves only to return due
to a beta cutoff after the examining the first few is a huge waste of time, necessitating some form of batched
incremental move generation, which itself poses other difficulties. Up until the last couple of years, for these
reasons SHARP also used the stepwise formulation of search.

However, the stepwise formulation also has disadvantages. Since alpha-beta search is depth-first, it reduces the
effectiveness of move ordering by forcing the search to consider moves that begin with the same steps together.
If for example the four-step move Ee6s Ee5s Ee4s Ee3w is heuristically likely to be a good move but no other
moves beginning with Ee6s are likely to be good, then in the event that the search first explores Ee6s, Ee5s,
Ee4s, Ee3w and the move turns out not to be good, it will be forced to then uselessly explore every other move
in the subtree beginning with Ee6s before being allowed to try better alternatives.

SHARP solved this problem in 2014 with the innovation of using a hybrid formulation. At any given node, the
move list contains a mix of moves ranging from one to four steps20. This allows promising moves with three or
four steps to be tried without committing to examining a large number of other moves with the same prefix. The
transposition table move and killer moves are now always recorded with the full four steps21, allowing them to be
tried in rapid succession. Similarly, the static capture move generators also generate the entire capture sequence
rather than merely the step that begins the capturing move, and pushes and pulls are always generated with both
steps together.

Switching from an originally stepwise formulation to this hybrid formulation by itself resulted in about a 20%
speedup for 9-step searches and much more for deeper searches. But more importantly, coupled with tactical

19That is, per move on average giving up an amount of advantage that SHARP judges to be 6% of the value of a rabbit in the opening. A
rabbit is similar in value to a pawn in Chess.

20Unless reduced, moves still decrement the remaining depth of the search proportional to number of steps they contain, with pass steps
decrementing by the number of steps left in the turn.

21This involves using a principal-variation recording mechanism to extract out the full 4 steps, since the first time these moves are discov-
ered to be best, they are often played over more than one level of recursion.
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move generation, this hybrid formulation enables effective late-move reduction. A hybrid formulation makes it
easy to separate promising moves from other moves and protect them from being reduced. By contrast, a stepwise
search gives only very coarse control over the search - one can only differentiate between moves in a forward
manner by their first steps.

6. POSITIONAL EVALUATION

Recent improvements in the evaluation function have also played a major rule SHARP’s strength and success.
Whereas we managed the first obstacle to strong play in Arimaa, the branching factor, with a series of new
innovations to greatly improve the move ordering and selectivity of the search, the second obstacle of crafting a
positional evaluation accurate enough to guide the program through strategic positions was handled with simple
dedicated engineering - a great deal of hand-tuning and testing guided by expert knowledge (see 6.3). To give
the improvements a proper place we start with the description of a testing procedure (6.1) and of a developement
cycle (6.2). We describe new components and improvements in 6.4.

6.1 Testing

Positional evaluation in Arimaa is difficult and complicated. Although recently there have been promising devel-
opments in automated evaluation learning and tuning (Hrebejk, 2013), the strongest Arimaa programs continue
to have hand-written evaluation functions. Like them, SHARP’s evaluation function is hand-written. It spans
thousands of lines of code and involves dozens of tables and hundreds of numeric parameters and constants.

The only thing that made this complexity manageable was having an effective way to test and inspect the results
of changes. Two methods in particular have proven highly valuable, and while these methods are well-known
and by no means groundbreaking, they are important, and we present them next in Subsections 6.1.1 and 6.1.2.

6.1.1 Self-Play

Self-play was the most important way of testing changes to SHARP22. Every change to the evaluation function
(as well almost any change to the search) was tested by playing at least several hundred games against a variety
of older versions, often in multi-way tournaments. Some games used very fast controls (such as 4 seconds/move)
and some used more normal time controls (such as 15 seconds/move), with faster time controls used to collect
data rapidly and slower ones used to confirm differences with less bias.

To handle these multi-way tournaments and compare multiple versions of SHARP at once, we used the well-
known BayesElo program (Coulom, 2010) and/or a set of custom tools23to analyze the game results assuming
the Elo rating model and compute confidence bounds on the relative ratings of different versions. Changes were
only accepted if statistically significant or if based on prior expectations the changes were likely to at least not
cause harm (ex: a bugfix eliminating a source of random noise in the evaluation function).

While noisy and despite its possible biases, as far as we know, simply playing games is by far the most accurate
way to evaluate the effect of a change. Development relied extensively on self-play to ensure that no changes
significantly harmed the strength of the program.

6.1.2 Low-depth Play and Hand-Analysis

The second method used to test SHARP’s evaluation was to play it against itself or another human with only a
4-step-depth search and watch the game by hand. Modulo details such as quiescence search, a 4-step search
selects the move that directly maximizes the evaluation function. As a result, this testing method often revealed
strange quirks and preferences by the evaluation function that were clearly wrong or pathological.

22Testing against a variety of other strong opponents rather than just oneself would likely be preferable, but at this point there are no other
available programs strong enough!

23One such custom tool, for example, checks for any statistical intransitivities that would suggest the rating model used was a poor fit.
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6.2 Development Cycle

All of these methods facilitated the basic development cycle for the evaluation function. The cycle consisted of
the following five steps.

• Identify a deficiency, whether from an observed mistake in a game, expert commentary or feedback, seeing
an obvious strategic misjudgment in low-depth play, etc., using search traces to trace bad play down to
specific misevaluated board positions24.

• Using instances of this problem as test positions, iterate on different possible implementations of a new
evaluation term or a modification of an existing term to get the program to produce the right evaluation for
those positions.

• Use low-depth-play testing to expose whether SHARP now appears to be doing unintended things as a result
of side effects of the change. If so, go back and iterate further on the implementation.

• Check the performance cost of the new evaluation code, optimizing or simplifying and iterating further if
the performance cost is too large.

• Once the intended evaluation is implemented, test it with a few thousands of games of self-play to determine
whether it is ultimately effective or not.

6.3 Basic Evaluation Components

SHARP’s evaluation function, for the most part, is linear, simply summing together terms for the various different
components:

Eval = Material + Piece-square tables + Trap control + . . .

Many of these terms are themselves sums of subterms where each subterm corresponds to a piece or square or
board pattern and is a function of several features, often combined by applying lookup-table based transforms
and taking a product. For example:

Piece Threat Score =
∑
p

Value(p) ∗ f(TrapScore(p)) ∗ g(ThreatDistance(p)) ∗ ...

Nine important top-level components are described below.

6.3.1 Material

In Arimaa, like in Chess, the material difference is the most important factor in evaluating a position.

One major difference between Arimaa and Chess is that in Chess, static piece values are a moderately good
approximation throughout the game to the average value of a given material balance25. In Arimaa, this is not true.
Since only relative piece strength matters for pushing, pulling, and freezing, the value of a piece depends heavily
on the distribution of opposing piece strengths, with heavier pieces usually devaluing and weaker pieces usually
increasing in value as pieces are traded.

To handle these nonlinearities, SHARP uses the “HarLog” material evaluation formula, developed by an anony-
mous arimaa.com user during a forum discussion thread (Anonymous, 2009):

HarLog = G ∗ log(GR ∗ GP
SR ∗ SP

)
∑

p∈NonRabbitPieces
(1 + Cp)/(Q+Op)

24Having an easy-to-use search trace was invaluable, particularly one allowing interactive exploration of the game tree.
25Commonly, Pawn = 1, Knight = 3+, Bishop = 3+, Rook = 5, Queen = 9.
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where GR and GP are the number of gold rabbits and pieces, SR and SP are the number of silver rabbits and
pieces, Op is the number of opposing pieces stronger that p, Cp = 1 if Op = 0 and else Cp = 0, and G =
0.6314442034 and Q = 1.447530126 are constants.

While somewhat arbitrary, in practice this formula gives values for piece trades that agree closely with evaluations
from expert players.

6.3.2 Piece-Square Tables

SHARP also uses the common technique of piece-square tables as a cheap and simple way to encourage different
pieces to develop to useful locations, particularly the elephant. For each piece, a small value is added or subtracted
using a table lookup based on its location and the number of stronger opposing pieces.

Additionally, for rabbits, to capture the effect that rabbit advances are of slight negative value early on but become
good once pieces are traded, an additional table, indexed by the y-coordinate of the rabbit and the sum of twice
the number of non-rabbit pieces of the opponent plus the number of rabbit pieces of the opponent, penalizes
advancement when the opponent has a lot of material and rewards it when the opponent has less.

Figure 6: Piece-square table for the silver elephant

6.3.3 Trap Control

Perhaps the most important positional feature after material in Arimaa is trap control, referring to the ability and
ease with which a player can locally defend against material threats in a trap, or conversely, the ability of a player
to safely make material threats in that trap.

SHARP estimates trap control by summing over each piece the product of a factor that depends on the Manhattan
distance of that piece from the trap with a strength factor that combines both the global and the local material
rank of the piece. A variety of additional adjustments are applied, including:

• An adjustment for who has the strongest piece nearby for a couple different choices of radii.

• A bonus for controlling the defense squares closer to the edge of the board (pieces near the edge are less
easily dislodged).

• An adjustment for having a weak piece on the trap square itself, varying from a bonus when trap control
is otherwise weak (the piece helps defend) to a penalty when otherwise strong (the piece interferes with
making threats).

For each trap, the resulting trap control score is fed through a logistic function x �→ 1/(1 + e−kx) to produce
the final evaluation. The trap control scores themselves are also used as inputs to a variety of other evaluation
components.
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Figure 7: Silver has lost trap control at his c6 home trap, with Gold solidly holding the b6, c7, and d6 squares

6.3.4 Freeing and Domination Distance

For each piece, SHARP approximately calculates the number of steps (0-5) required to free a piece to move, where
a piece is free if it is unfrozen and has a legal step, push, or pull available to it that does not sacrifice it26.

Additionally, for each piece, SHARP approximately computes the number of steps (0-5) required by the opponent
to dominate it, which is to place a stronger opposing piece adjacent to it such that the opposing piece is free.

These values are not used directly in the evaluation score, but rather are used as inputs into most other evaluation
components, as they are important features to evaluate how defendable or threatenable a piece is.

6.3.5 Hostages

A common strategic pattern in Arimaa consists of one piece, frequently the elephant, holding another piece
“hostage” by pinning and threatening it with capture. This ties the opponent’s elephant to defense, ideally giving
the hostage-holder the strongest remaining piece on the rest of the board.

SHARP evaluates hostages in a complicated manner involving a wide variety of features, some of which are:

• The trap control score of the relevant trap.

• The pieces involved and whether holding the hostage actually does result in the strongest free piece else-
where.

• The number of steps required to capture if defense is abandoned.

• The degree of advancement of pieces by the hostaged side (a common counter against a hostage pattern is
a swarm of the trap with smaller pieces to free the tied-down elephant from defense).

6.3.6 Frames

Another common strategic pattern in Arimaa is a “frame”, where a piece is stuck on a trap, pinning another piece,
usually the elephant, to defense. Frames are evaluated using a similarly wide variety of features, including:

• The strength of the piece being framed.

26An exception is made where a piece is considered free if it is unable to move only due to friendly pieces blocking it in, would still be
unfrozen and unsacrificed if those pieces were to move away, and the situation is not part of a larger “blockade” formation.
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• The domination distance of the pieces holding the frame.

• The strength and quantity of pieces needed to hold the frame.

• The ability of the opponent to rotate out and replace the stronger pieces with weaker ones.

6.3.7 Elephant Mobility and Blockades

Another relevant feature is how physically free the elephant is to move - having an elephant that can move and
reach many parts of the board quickly is better than having one blockaded or hemmed in.

SHARP uses bitmap operations to estimate the number of squares reachable by the elephant using varying numbers
of steps. These computations take into account steps required for stepping, pushing, or pulling blocking pieces, as
well as the fact that the elephant cannot step through a trap by itself. The resulting counts, weighted by centrality
of squares, are summed together and fed through a lookup table to produce a final score.

Additionally, in the event that the elephant is decentralized and nearly completely blockaded, additional routines
are called to estimate the value of the blockade taking into account features very similar to those for a frame:

• The exact position of the elephant and the degree of blockadedness of the elephant.

• The domination distance of the pieces holding the blockade.

• The strength and quantity of opposing pieces needed to hold the blockade.

• The ability of the opponent to rotate out and replace the stronger pieces with weaker ones.

Figure 8: Silver’s elephant is blockaded at f2. Silver is completely lost.

6.3.8 Piece Threats

Individual pieces, if threatened with hostaging or capture, can be liabilities. Features relevant in piece-threat
evaluation include:

• The trap control score of the relevant trap.

• The number of steps required to capture the piece, including steps to push away defenders of the trap.

• Whether or not the piece is frozen, and whether there are friendly pieces in front of the piece.

• Whether or not it is a rabbit (rabbits can’t retreat, making their defense uniquely difficult).
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Additionally, the value of the piece itself is computed by considering what the HarLog score would be with and
without the piece on the board, and is used to scale the threat. To avoid overpenalizing, in the event that the piece
is already being penalized directly for another feature (such as being hostaged), only the maximum of the two
penalties is used.

6.3.9 Goal Threats

Highly advanced rabbits can be extremely valuable if they are supported with other pieces or they are in sparsely-
defended regions, so that they exert goal-threat pressure on the opponent. Features used in their evaluation
include:

• The y-coordinate of the rabbit.

• A score indicating how well-blocked the rabbit is from advancing to goal.

• The trap control score of the nearest opponent trap to the rabbit.

• A heuristic measure of the amount of supporting friendly strength around the rabbit.

Figure 9: Silver is winning due to the severe goal pressure exerted by the marked rabbits.

6.4 New Components and Improvements

Prior to 2015, one of SHARP’s major weaknesses was an understanding of how to place pieces efficiently and
strategically. Such an understanding is necessary to play well in many non-tactical situations that involve gradual
maneuvering and fighting for position. Although a variety of improvements were made in many areas of the eval-
uation function, the two largest improvements came from adding two major new components to fix this weakness,
centering around the concepts of “piece alignment” (6.4.1) and “imbalances” (6.4.2). A third noteworthy new
component involving nonlinearities and ”swindles” is discussed in 6.4.3.

6.4.1 Piece Alignment

In Arimaa, “piece alignment” refers to the heuristic that pieces should placed near the opposing pieces that they
most efficiently beat - camels should try to be near opposing horses, horses should try to be near opposing dogs,
etc. Prior to 2015, a term for this did exist in the evaluation function but it was incomplete and failed to actually
capture this heuristic and the nuances around it well.

The new term consists of a sum across each pair of non-rabbit pieces (p1, p2) where p2 is (one of) the strongest
opposing piece(s) weaker than p1, taking into account the following features:
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• The estimated number of steps needed for p1 to dominate p2, computed more approximately than the
domination distance computation described earlier but with no cap on distance.

• The strength and quantity of the pieces of the two types.

• The y-coordinates of the pieces (attacking more advanced pieces is more valuable).

Piece alignment has long been recognized by human players to be important, and its absence from SHARP was
one of the largest strategic weaknesses limiting the strength of the program. Implementing this feature properly
resulted in an enormous improvement of nearly 80 Elo rating points in self-play testing. This is one of the largest
gains ever observed for any single change in the last several years.

6.4.2 Imbalances

The other major new evaluation component in SHARP for strategic piece placement was a term for “imbalances”,
which refer to inefficiencies caused by having an overconcentration of pieces in the same region or side of the
board.

SHARP computes this component of its evaluation in a very similar way to the way it computes the piece align-
ment value, but instead considers pairs of pieces owned by the same player rather than by different players, and
instead of domination distance uses a slightly different notion of distance to assign penalties when many strong
pieces are near each other or on the same side of the board.

Unfortunately, the current implementation of this feature fails to capture the strategic concept well enough to
match expert opinion in some positions. It is likely that some more iteration and experimentation would produce
a different design or feature set that would perform better. Nonetheless its addition was still a large improvement
for 2015, gaining about 35 rating points in self-play testing.

6.4.3 Nonlinearities and Swindles

A final recent innovation in SHARP’s evaluation function deals with a phenomenon of Arimaa that allowed human
players to sometimes “swindle” computer programs out of otherwise won games.

In Arimaa, in situations involving goal threats and fights that threaten to end the game immediately, the values
of most other positional factors, such as material, are reduced. Since pieces in Arimaa move slowly, in the event
that a goal fight is occurring in a corner of the board, the game can easily be won or lost in a way determined only
by the local state of that corner, making the global material balance of the board irrelevant.

Since most strong Arimaa programs, old versions of SHARP included, use evaluation functions that are essentially
linear, they can sometimes be defeated in otherwise hopeless positions by sacrificing a large amount of material
in order to initiate a goal attack. Often the program will happily take the offered material, oblivious to the fact it
is made irrelevant by the attack.

Ideally, one would like to solve such a tactical situation primarily via search, but this is difficult. Moreover, the
phenomenon still applies to a lesser degree even if the goal threats are not likely to end the game right away -
they can still increase the overall volatility of the position.

SHARP now handles this by explicitly modeling the situation. In particular, the “goal threat” component of
the evaluation function, in addition to outputting a term that gets linearly added into the score, also outputs
probabilities g and s that Gold and Silver, respectively, win or otherwise turn the game around in the short term
due to the volatility of their goal threats. The normal linear part of the evaluation, x is computed and then fed
through a sigmoid to produce a probability p = 1/(1+ e−kx) that Gold wins the game if the game is instead won
over the long term. The final output of the evaluation function as a whole is simply the total probability that Gold
wins:

Final eval = 1 ∗ g + 0 ∗ s+ p ∗ (1− g − s)
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In certain positions, this change makes it noticeably harder to swindle SHARP, since when ahead, SHARP is more
likely to choose a “safe” and “conservative” move as opposed to a more “greedy” move. Additionally, it is more
likely to attempt to start goal fights when sufficiently behind. And indeed, in self-play testing, this change resulted
in an improvement of about 15 Elo points.

7. RESULTS AND FUTURE WORK

Over the last few years, SHARP has improved greatly in all areas of play. SHARP demonstrates that it is possible
to achieve effective reduction/pruning in Arimaa by leveraging expert game data using local move features and
patterns, and to meet the challenge of producing an accurate positional evaluation by employing good methods
for iterative tuning and testing.

Year 2008 2010 2011 2012 2014 2015
Blitz (15s/move) N/A 2045 2139 2256 2286 N/A
CC (2m/move) 1513 2035 1980 2117 2172 2487
Self-play gain N/A Untested Untested 100-250? ≈200 ≈400

Table 2: Elo ratings of versions of SHARP on arimaa.com as of July 16, 2015 at different time controls, along
with estimated single-threaded self-play gain over the previous version at fast testing speeds.

However, SHARP’s heuristics and algorithms are far from perfect. There are multiple promising avenues for
further improvement in both search and evaluation. In the search, a variety of basic things have simply not been
tried yet, ranging from a more sophisticated replacement scheme for the hashtable, to razoring and other heuristic
pruning of nodes near leaves, to other enhancements such as “principal variation search” (Marsland, 1986).
Tuning of the heuristics in components such as the tactical move generation could also yield improvements.

In the evaluation function, particularly with recent work demonstrating the feasibility of automated learning (Hre-
bejk, 2013), there is huge potential to improve SHARP by tuning the hundreds of different weights and coefficients
on all of the features that have been implemented. Identifiable missteps and strategic misunderstandings in some
of its recent games also suggest new features to add. Evaluation of positions in the opening remains a particularly
weak part of SHARP’s game, and almost certainly large improvements are possible.

While SHARP may have won the Challenge, there is still a small way to go to produce a bot that is unambiguously
dominant over the top human players rather than merely competitive or favored, and beyond that there is still
plenty of room to experiment and grow27. However, with our results Arimaa now crosses the threshold, leaving
the ranks of the games holding out against effective computer play and joining the ever-growing pool of games
in which computers are the strongest players.
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CHESS ENDGAME NEWS

G.McC. Haworth1

Reading, UK

The recent focus by Newborn and Hyatt (2014) on the increasing ability of chess engines to play endgames is 
most welcome. They revisited a 16-position test set TS1 derived from Fine (1941) and demonstrated that the 
seminal chess engine CRAFTY (Hyatt, 2015) backed only by 5-man ‘EGT’ endgame-tables (Nalimov et al, 2000) 
could now handle it with ease. They therefore considered a second 16-position test set TS2 as a stiffer benchmark
challenge for CRAFTY other chess engines.

The following engines are defined here:

- Mk-1: filters moves in sub-k-man (‘skm’) positions by minimaxing on Depth to Mate (‘DTM’),
- F: filters moves by minimaxing on the DTF depths defined by FINALGEN (Romero, 2012),
- C5: filters by minimaxing on ‘DTC’ Depth to Conversion and using s6m DTC EGTs,2

- Z6: filters by minimaxing on ‘DTZ’ Depth to Zeroing of the ply-count, using s7m DTZ50
ʹ EGTs,3, 4

- E ≡ M7FC5Z6: filters by deploying engines M7, F, C5 and Z6 in turn,
- H: Hyatt’s CRAFTY, unassisted by EGT support,
- HM5: the engine used by Newborn and Hyatt (2014),
- X: the author’s FRITZ14 engine, analysing at 3mins/position, and
- EH: notional engine, EGT-based but supported by CRAFTY as needed, whose performance is defined here.

FINALGEN (Romero, 2012) provides depth to mate and/or winning pawn-conversion for positions with at most
one piece per side and sufficiently limited pawn mobility. Because it cannot contemplate, e.g., endgame KQQKP,
DTF depths can be greater than DTM depths. FINALGEN builds its EGTs in single-thread mode and does not call 
on non-FINALGEN EGTs. Engine E considers the four depth metrics in ‘most distant first’ sequence, the most 
describable of the twenty-four sequences available! The use of the DTF/C/Z metrics does not affect ‘moves to 
mate’ but can isolate a unique optimal move when DTM alone does not. Table 3 gives example positions and 
moves, also illustrating the sort of unnatural move-choices that (non-DTM) metric arithmetic can dictate.

EH and HM5 can choose different moves but where the position is beyond all available EGT-based machines, EH 
is effectively engine H and, here, plays the move attributed to CRAFTY by Newborn and Hyatt (2014). The 
objectives of deploying engine EH on test sets TS1 and TS2 were to:

- exercise FINALGEN and the Lomonosov 7m DTM EGTs (MVL, 2015) where possible,
- examine to what extent each ‘EH element’ contributed in finding a best line from the test positions,
- compare the move-choices and ‘moves to mate’ of HM5 and EH,
- examine the uniqueness and optimality of the moves available,
- consider what the characteristics might be of good positions in a notional test set TS3. 

Table 1 details the positions of test sets TS1 and TS2, and indicates the performance of engines HM5 and EH on 
them. Note that these are mainly wtm wins except for a wtm draw (TS2.07), a btm draw (TS2.02) and three btm 
wins for Black (TS1.13 and TS2.04/05). It should also be noted that TS1.15 ≡ TS2.13.

Table 2’s row a indicates the initial number of men for each position: row b provides a DEEP FRITZ14 3-minute 
evaluation of the initial position. Row c gives the number of positions which are beyond the scope of engine E,
with row d giving the first position checked by EH and row e giving the number of men at that point. Rows f-i
indicate the number of positions where, respectively, FINALGEN, 7-man (7m), 6m and s6m DTM EGTS are the 
first endgame tools used within EH: this data is also illustrated graphically in more detail in Figure 1. Row k
indicates the first position at which engines EH and HM5 differ, with row l indicating the nature of the

1 The University of Reading, Berkshire, UK, RG6 6AH. email: guy.haworth@bnc.oxon.org.
2 Bourzutschky and Konoval computed all 6m DTC EGTs (Haworth, 2013) but these are not publicly available.
3 The use of De Man’s s7m DTZ50ʹ EGTs (CPW, 2013) is valid: the FIDE 50m draw-rule does not become relevant here.
4 Further, Cn and Zn prefer/defer a change of force or pawn-push even if there is no EGT, q.v., Table 3, #09.
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‘suboptimality’ from EH’s point of view. A further 3-minute evaluation by FRITZ10 at that point as given in row 
m makes it clear that, apart from position TS2.11, any engine would likely secure a result from those positions. 
Data beyond row m indicates the count of men for each subsequent position in the HM5 line provided. Haworth 
(2015) provides supporting data, including extensions of the tables, pgn files and annotated lines of play. 

Table 1. Key data for the positions of test sets TS1 and TS2.

Table 2. The benchmarking of HM5 lines by engine EH in the context of the force-profiles.

'Best'
move HE EH ∆

1.01 Fine 25 5 3-2 KPPKP 6k1/7p/5P1K/8/8/8/7P/8 w - - 0 1 1-0 Kg5 35 35 35 0
1.02 Fine 26 5 3-2 KPPKP 8/2k5/p1P5/P1K5/8/8/8/8 w - - 0 1 1-0 Kd5 33 31 33 -2
1.03 Fine 29 5 3-2 KPPKP 4k3/4Pp2/5P2/4K3/8/8/8/8 w - - 0 1 1-0 Kf5 25 29 25 4
1.04 Fine 42 5 3-2 KPPKP 8/5p2/8/4K1P1/5Pk1/8/8/8 w - - 0 1 1-0 Ke4 33 47 31 16
1.05 Fine 51 6 3-3 KPPKPP 8/8/2pp3k/8/1P1P3K/8/8/8 w - - 0 1 1-0 d5 37 23 37 -14
1.06 Fine 53 6 3-3 KPPKPP 8/8/3pkp2/8/8/3PK3/5P2/8 w - - 0 1 1-0 Ke4 47 47 47 0
1.07 Fine 58 7 4-3 KP(3)KPP 8/8/2ppk3/8/2PPK3/2P5/8/8 w - - 0 1 1-0 d5+ 43 31 47 -16
1.08 Fine 61 10 5-5 KP(4)KP(4) 8/ppp5/8/PPP3kp/8/6KP/8/8 w - - 0 1 1-0 b6 ? 39 33 6
1.09 Fine 66 8 4-4 KP(3)KP(3) 8/1k3ppp/8/3K4/7P/5PP1/8/8 w - - 0 1 1-0 Kd6 ? 41 41 0
1.10 Fine 67 8 4-4 KP(3)KP(3) 8/2p5/3k4/1p1p1K2/8/1P1P4/2P5/8 w - - 0 1 1-0 b4 ? 53 53 0
1.11 Fine 70 9 5-4 KP(4)KP(3) 8/k7/3p4/p2P1p2/P2P1P2/8/8/K7 w - - 0 1 1-0 Kb1 ? 63 65 -2
1.12 Fine 76 11 6-5 KP(5)KP(4) 8/8/p6p/1p3kp1/1P6/P4PKP/5P2/8 w - - 0 1 1-0 f4 ? 67 53 14
1.13 Fine 80 14 7-7 KP(6)KP(6) 8/8/1ppk4/p4pp1/P1PP2p1/2P1K1P1/7P/8 b - - 0 1 0-1 b5 ? 43 39 4
1.14 Fine 82 12 6-6 KP(5)KP(5) 8/pp5p/8/PP2k3/2P2pp1/3K4/6PP/8 w - - 0 1 1-0 c5 ? 57 37 20
1.15 Fine 90 14 7-7 KP(6)KP(6) 8/7p/2k1Pp2/pp1p2p1/3P2P1/4P3/P3K2P/8 w - - 0 1 1-0 e4 ? 57 45 12
1.16 Fine 100A 12 6-6 KP(5)KP(5) 8/6p1/3k1p2/2p2Pp1/2P1p1P1/1P4P1/4K3/8 w - - 0 1 1-0 Kf2 ? 47 35 12

2.01 CCE4 479 8 4-4 KP(3)KP(3) 8/1p4kP/5pP1/3p4/8/4P3/7K/8 w - - 0 1 1-0 e4 ? 47 47 0
2.02 CCE4 491a 8 4-4 KP(3)KP(3) 8/1pp5/3k3p/PP6/2P2K2/8/8/8 b - - 0 1 = Kd7 = = = =
2.03 CCE4 530 8 4-4 KP(3)KP(3) 2k2K2/8/pp6/2p5/2P5/PP6/8/8 w - - 0 1 1-0 a4 ? 83 73 10
2.04 CCE4 608 10 5-5 KP(4)KP(4) 8/pp3p2/8/6kp/8/3K1PP1/PP6/8 b - - 0 1 0-1 f5 ? 39 55 -16
2.05 CCE4 679 14 7-7 KP(6)KP(6) 8/pp2k1pp/2p5/2P1p3/2P1P2P/6P1/P7/2K5 b - - 0 1 0-1 g5 ? 79 67 12
2.06 CCE4 680 16 8-8 KP(7)KP(7) 8/1p6/p1p5/P1Pp2pp/1P1P1p1k/5P1P/6PK/8 w - - 0 1 1-0 g3/g4 ? 43 43 0
2.07 CCE4 765 11 6-5 KP(5)KP(4) 8/1k6/p4p2/2p2P2/p1P2P2/2P5/P1K5/8 w - - 0 1 = Kc1 = = = =
2.08 Lejeune 2 7 4-3 KP(3)KPP k7/4p3/4p3/8/8/3P1P2/5P2/K7 w - - 0 1 1-0 Kb2 ? 65 65 0
2.09 Lejeune 4 8 4-4 KP(3)KP(3) k7/8/1p6/p1p5/2P4K/8/PP6/8 w - - 0 1 1-0 a4 ? 61 61 0
2.10 Lejeune 5 7 4-3 KP(3)KPP 8/8/p7/8/1P6/7p/P4k1P/3K4 w - - 0 1 1-0 a3 ? 49 49 0
2.11 Lejeune 6 7 4-3 KP(3)KPP 8/5p1p/8/6k1/8/6P1/5PP1/7K w - - 0 1 1-0 Kh2 ? 77 77 0
2.12 Christmas Cracker 11 6-5 KP(5)KP(4) 3k4/3p4/3p4/p2P2p1/P2P2P1/3P4/3K4/8 w - - 0 1 1-0 Kd1 ? 55 55 0
2.13 Pillsbury 1895 14 7-7 KP(6)KP(6) 8/7p/2k1Pp2/pp1p2p1/3P2P1/4P3/P3K2P/8 w - - 0 1 1-0 e4 ? 57 45 12
2.14 Capablanca 1919 15 8-7 KP(7)KP(6) 8/5p2/2kp1p1p/p1p2P2/2P5/7P/PP3PP1/6K1 w - - 0 1 1-0 a4 ? 55 49 6
2.15 Botvinnik 1944 12 6-6 KP(5)KP(5) 8/1p3k2/p4ppp/3P4/1P6/4K2P/1P4P1/8 w - - 0 1 1-0 g3/g4 ? 61 65 -4
2.16 Botvinnik 1958 12 6-6 KP(5)KP(5) 8/4pk2/1p4p1/1P2p3/3pP2P/3K2P1/4P3/8 w - - 0 1 1-0 Kc4 ? 71 69 2

TS# Val. Mate, plydtmIdentity Material FENw-b#m
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Some headlines from the results:

• The 4 5m and 2 6m tests TS.01-06 are solvable using accessible Nalimov s7m DTM EGTs,
• a further 4 tests, TS1.07 and TS2.08/10/11, are solvable using MVL (2015) 7m DTM EGTs,
• a further 9 tests, TS1.08-11 and TS2.02/03/07/09/12 are solvable if only FINALGEN is also used,
• the remaining 13 tests (TS1.12-16 and TS2.01/04-06/13-16) require the initial use of CRAFTY,
• across TS1/2, CRAFTY, FINALGEN, 7m, 6m and s6m DTM EGTs are EH’s lead evaluator as follows:

CRAFTY 78/181, FINALGEN 142/222, 7m DTM 82/97, 6m 46/112 and 5m 324/290 times, i.e.,
in % terms, CRAFTY 12/20, FINALGEN 21/25, 7m DTM 12/11, 6m 7/12 and 5m 48/32,
q.v., Figure 1 for a graphical representation of the breakdown per position,

• HM5 and EH played identically on 6 tests, TS1.06 and TS2.01/02/06/07/10.

Figure 1. TS1/2: number of plies for which CRAFTY, FINALGEN or 7m/6m/s6m EGTs are EH’s lead evaluator.

Figure 2. TS1/2: distribution of the difference of CRAFTY’S and EH’s ‘#moves to mate’.

Figure 2 shows the frequency of mate-length differences other than zero, of which there are thirteen. HM5 in 
fact only takes 21 more moves across the 32 positions of TS1/2 than EH: the four outliers are 
TS1.05/TS1.07/TS2.04 where HM5 concedes for the defense, and TS1.14 where HM5 takes 10 moves more to 
mate. From TS1.05, a total of 7 moves are conceded with moves 1b (4m), 3b (2m) and 4b (1m). From TS.07, a 
net total of 8 moves are conceded, see moves 1b/2w/2b/4b/6w/8w. From TS2.04, the three moves 10. Ke2 Ke4 
11. Kd2 concede 4, 4 and then crucially 7 moves respectively in DTM terms. For TS1.14, White’s moves 
12/13/14/16 concede 1/1/1/5 moves in DTM terms.

HM5 resolves all the TS1/2 tests whereas, for 13 positions, E is as useful as a Mark 1 Dalek in a stairwell and 
requires CRAFTY’s initial help. Although all 5m EGTs can be created in nine phases5 as ancillary, parallel 
threads of computation within CRAFTY’s hour, it would be interesting to see the performance of CRAFTY,
completely unassisted by M5, both playing itself and with EH taking the other side.

5 The 9 phases are: 3-man (2 phases ≡ 0/1 pawns), 4-man (3 phases ≡ 0/1/2 pawns) and 5-man (4 phases ≡ 0/1/2/3 pawns).
Phases 1-5 take ~30 seconds and phases 6-9 take ~30m each, times easily improved with more parallelism.
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Table 3. Some illustrative positions and decisions taken by engine E.

Considerations of the two key resources, space and time, suggest that the EH/HM5 performance comparison is 
one of unlike ‘apples and pears’. In the latter days of man-machine contests, the use of 6-man EGTs was 
banned for these reasons. Engine E inherits the unlimited space/time resources used to compute EGTs whereas 
HM5 is using predetermined space/time and only one hour of real-time solving time. The use of ‘WDL’ 
win/draw/loss EGTs on ever-greater GBytes of low-latency SSD memory will facilitate access to EGTs deeper 
into the forward search. Figure 1 shows how far down the search-tree CRAFTY would have to progress before 
invoking a ‘FINALGEN’ to create some EGTs: 2 ply in TS2.01, 3 ply in TS1.12 but 44 ply in TS2.05/06.

There are at least two measures of the ‘difficulty’ of a position. One is the time taken to identify and adopt what is 
the best move but this will reduce as hardware evolves. A second, more hardware-independent measure, is the 
apparent relative merit of ‘the best move’ at various depths of search by one or more engines, though it is not yet 
clear how this can be turned into a single number even for one engine. 

As a footnote, the criticality of the position and value v of ‘the move’ can be assessed by analyzing the TS1/2 
positions with the other side to move (ostm). Verdicts after ‘’ are not purely EGT-based but required some 
tree-search and evaluation:

• v = 1 point, win becomes a loss: TS2.01; TS1.12/15, TS2.06/13
• v = ½ point, win becomes a draw: TS1.01/05-11, TS2.03/08-11; TS1.14, TS2.04-05/15-16
• v = ½ point, draw becomes a loss: TS2.02
• v = 0 point, result unchanged: 

- TS1.02-04, TS2.12. Note that TS1.03/04 and TS2.12 are type-BM zugs;6

-  TS1.13/16, TS2.07/14

Clearly, as chess engines search more deeply and therefore improve, the creation of challenging test sets 
becomes harder. Their purpose is primarily to test chess-engines’ search and evaluation rather than their use of 
pre- or even runtime-computed EGTs. Therefore, while the value of positions should be known, they should not 
be clearly decisive, have best opening moves which are quickly found or be in an EGT or in range of
FINALGEN. Only a few TS1/2 positions, including TS2.01/09/10/12, distinguish themselves in this regard
today. The focus on pawns, especially those with restricted movement, and the initial exclusion of pieces is 
helpful to both FINALGEN and chess-engine search, so the exclusive use of KP-endgames is an onerous 
restriction but one which is fortunately unnecessary.

The Chess Study epitomizes the ‘hard to solve’ position and TS1/2 used 16 of these. Some other investigations 
of ‘anti-computer’, even ‘impossible to solve’, positions, have drawn entirely on the corpus of studies, currently 
represented without peer by van der Heijden’s HHDBIV (2010). Three notable articles are those by van der 
Heijden himself (2006, 2014) and Vlasák (2013). However, it should be said that many of their choices look 
more like ‘game’ than ‘endgame’ positions, one having as many as 22 men on the board. This suggests that 
there should be separate accolades for the most difficult m-man positions. Do those positions of most marginal 
advantage with the greatest metric-depth (Haworth, 2013a/b) provide the greatest challenge to chess-engines if 
they do not have access to the relevant endgame table? 

6 A type-BM zug is one in which DTM is greater with the move than without it (Bleicher and Haworth, 2010)

# TS move FEN E-DTM E-DTF E-DTC E-DTZ Notes
01 1.01 1w 6k1/7p/5P1K/8/8/8/7P/8 w - - 0 1 Kg5ʹʹʹʹ — — — Absolutely unique winning move
02 1.11 3w 8/2k5/3p4/p2P1p2/P2P1P2/8/8/2K5 w - - 0 1 ? Kd1ʹʹʹ — —
03 1.01 1b 6k1/7p/5P2/6K1/8/8/7P/8 b - - 0 1 Kf7ʹʹ — — — The DTM EGT decides
04 1.01 10w 8/5k2/5P2/6KP/8/8/8/8 w - - 0 1 h6ʹ h6ʹʹ — — The DTF EGT decides
05 1.01 2w 5k2/7p/5P2/6K1/8/8/7P/8 w - - 0 1 Kf5ʹ Kf5ʹ Kf5ʹʹ — The DTC EGT decides
06 2.08 7w 8/4p3/8/4Pk2/2K2P2/8/5P2/8 w - - 0 1 Kc5ʹ Kc5ʹ ? Kc5ʹʹ The DTZ EGT decides
07 1.12 14w 8/6k1/p7/1p3PKp/1P5P/P7/8/8 w - - 0 1 ? Kxh5ʹ Kxh5ʹʹ — DTC decides without EGT: immediate capture ⇒ dtc  = 1p
08 1.09 2w 8/1k4pp/3K4/5p2/7P/5PP1/8/8 w - - 0 1 ? g4ʹ ? g4ʹʹ DTZ decides without EGT: immediate P-push ⇒ dtz = 1p
09 1.12 24b 8/5k2/3Q4/pp4K1/1P6/P7/8/8 b - - 0 1 Kg7ʹ Kg7ʹ Kg7ʹ Kg7ʹʹ DTC/Z decide without EGT: axb4 and a4 are both rejected
10 1.14 15b 7Q/pP6/Pk6/1P6/6K1/8/8/8 b - - 0 1 Kc5ʹ Kc5ʹʹ — — dtm  < dtf : dtm  = 8p and dtf  = 16p
11 1.14 16w 7Q/pP6/P7/1Pk5/6K1/8/8/8 w - - 0 1 b8Qʹ Qb2ʹ b8Qʹʹ — FINALGEN cannot contemplate endgame KQQPPKP
12 2.03 25w 8/2P5/pK1k4/p7/8/1P6/8/8 w - - 0 1 c8Qʹʹ — — — … and not CRAFTY's 25. Kxa5, reaching for the 5m EGTs
13 1.12 20w 6k1/8/p4P1P/1p4K1/1P6/P7/8/8 w - - 0 1 ? f7ʹʹ — — Unnatural: 20. Kg6 promotes a pawn quickly
14 1.12 20b 6k1/5P2/p6P/1p4K1/1P6/P7/8/8 b - - 0 1 ? Kf8ʹʹ — — Unnatural: 20. … Kxf7 clearly prolongs the line
15 1.09 3b 8/1k4pp/3K4/8/6PP/8/8/8 b - - 0 1 Kb6ʹ Kb6ʹ ? Kb6ʹʹ DTF-excluded, DTZ-u-optimal Kc8! requires Ke(6/7) ʹʹʹʹ
16 1.15 17b 1Q6/2k5/4P3/5P2/7p/6p1/7P/K7 b - - 0 1 ? Kc6ʹʹ — — Kc6 '⇒' dtf  = 24p though dtm  = ~12p. Kxb8 is more natural

Effectively unique:  alternative Kb1 merely retracts move 2w
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Table 4. The studies cited by van der Heijden (2006, 2014) and Vlasák (2013).

Figure 3. Four studies from Table 4: H01 (White to draw); V04, V05 and V16 (White to win).

Table 4 lists the 37 positions that van der Heijden and Vlasák chose. Authors are credited and serial numbers in 
the HHDBIV corpus are given.7 The status of the positions vis-à-vis sub-8-man EGTs and FINALGEN is 
indicated. Some of these positions may contribute in part to a future, hypothetical test set TS3.

The author lightly tested ‘DF14’ DEEP FRITZ 14, i.e., Horváth’s engine PANDIX (CPW, 2015) against the first, 
recommended move. The right-hand columns show its evaluation based on a 2-core, 3-minute run, the ‘∆’
evaluation-difference to the next-best move, the move chosen and whether this agrees with the composition’s 
author or not. But DF14 is just one engine and it should be noted that different engines have different blind 
spots, can succeed or fail in finding ‘best moves’ and can certainly vary widely in their efficiency. The lesson is 
perhaps to stress-test studies with a battery of significantly different engines. Vlasák used HIARCS and 
HOUDINI, HIARCS usually but not always being slower. Of his studies, the ones which defeated an engine or 
occupied it for more than one hour are V04-05, V12 and V16-18. Others, such as V03/07/08/10/14, are in the 
second, ‘useful engine-performance benchmark’ class while the rest are quickly solved by engines.

The author’s DF14 found the recommended first move in all but 8 of the 37 positions, but note that one of 
these, H17, is included only to emphasise that the study composer presumes a fallible opponent who can be 

7 HHDBIV indices for the 16-study subset of TS1/2 are: TS1.01-04 (#7988, 7316, 1983, 18467), TS1.06-07 (1842, 20109),
TS1.10-11 (3970, 4175), TS2.01 (15174), TS2.03 (15590), TS2.07-12 (51741, 66283, 18012, 31619, 66284, 7093). 

GBR
# pos. code Eval. ∆ Depth Choice /

01 H01 4728 1w Behting 1906 9 4-5 0002.14 n n 8/8/7p/3KNN1k/2p4p/8/3P2p1/8 w - - 0 1 = -4.10 1.12 21 1. Ng7+ 
02 H02 25700 6w Gurvich 1952 7 4-3 0044.10 Y n 1N6/6k1/1B6/8/1P6/8/b1K5/n8 w - - 0 1 1-0 4.35 0.44 25 6. Kd1 
03 H03 70286 3w Antonini 2003 7 3-4 4001.02 Y n 8/8/2K5/4N3/p5Q1/4k2p/8/q7 w - - 0 1 1-0 12.20 0.00 19 3. Qf3+ 
04 H04 56516 4w Pervakov & Grin 1988 7 3-4 1400.02 Y n 8/8/8/8/5R2/8/kr1p2p1/3K3Q w - - 0 1 1-0 ∞ ∞ 21 4. Qh2 
05 H05 56539 4w Kuryatnikov 1988 7 4-3 0041.11 Y n 1k6/2p4B/4b3/4N3/2K5/8/P7/8 w - - 0 1 1-0 7.41 6.80 27 4. Kb5 
06 H06 35997 6w Mitrofanov 1967 9 5-4 4033.30 n n kb4Q1/P7/1PP5/K6q/8/8/8/4n3 w - - 0 1 1-0 12.65 12.65 21 6. Qg5 
07 H07 8860 6w Zepler 1923 7 4-3 0400.21 Y n 3k4/3P4/P2R4/8/6p1/r7/4K3/8 w - - 0 1 1-0 3.06 0.00 29 6. Ke1 
08 H08 67602 1w Smyslov 2000 8 4-4 0000.33 n Y 8/8/6p1/5p2/p1k2P2/8/P6P/4K3 w - - 0 1 = -0.66 11.04 26 1. a3 
09 H09 39037 1w Bazlov 1971 7 4-3 0405.00 Y n n7/2N4K/8/k7/7R/2r5/8/N7 w - - 0 1 1-0 6.88 6.02 20 1. Rh5+ 
10 H10 67600 2w Smyslov 2000 9 4-5 0130.23 n Y 8/5k1p/4p3/2K4P/5P2/3b4/p7/6R1 w - - 0 1 = 0.00 0.62 22 2. h6 
11 H11 32098 1w Fritz 1961 7 4-3 0310.21 Y Y B7/P7/P7/k6K/8/8/7p/r7 w - - 0 1 1-0 3.40 10.93 29 1. Bh1 
12 H12 67945 2w v. d. Heijden & Beasley 2000 7 5-2 0013.30 Y Y 8/8/8/8/8/K1P5/PBPn4/1k6 w - - 0 1 1-0 6.98 6.62 21 2. c4 
13 H13 57384 1w Arestov 1989 12 6-6 0053.33 n n 2K5/4p1B1/4k1P1/1b3pP1/p3n3/3P4/4B3/8 w - - 0 1 1-0 1.21 0.46 21 1. Bb2 
14 H14 58049 5w Neishtadt 1989 16 8-8 3213.45 n n 7k/p4p1B/p4P2/P3qP2/7R/p1p2R2/P7/Kn6 w - - 0 1 = 0.00 4.93 22 1. Re3 
15 H15 69180 6w Fabiano 2002 12 6-6 3001.44 n Y 3N4/K3p3/4p3/k1P5/p1P3p1/P7/4P3/7q w - - 0 1 1-0 10.96 10.97 19 1. e3 
16 H16 69110 4w Kralin 2002 13 6-7 0130.45 n Y 5bRK/6p1/2p4k/2P1p1p1/4p1P1/4P3/2P5/8 w - - 0 1 1-0 0.00 0.00 34 1. c3 
17 V01 32412 1w Zaitsev 1962 8 4-4 0107.11 n n 5Kn1/4n3/8/5P2/8/3k4/3p4/1N3R2 w - - 0 1 1-0 0.69 0.21 24 1. Rd1 
18 V02 71075 1w Gurgenidze & Kalandadze 2004 12 7-5 0300.63 n Y 8/pPPp1p2/3P1PPr/8/2P5/2k5/8/2K5 w - - 0 1 1-0 16.04 16.04 23 1. Kd1 
19 V03 64369 1w Gurgenidze & Kalandadze 1997 13 7-6 0801.33 n n 4R3/k6r/P3p3/K7/5P2/P5pp/8/RN1r4 w - - 0 1 = 0.00 10.40 18 1. Nc3 
20 V04 55531 1w Gurgenidze 1987 12 7-5 0613.51 n n 5Bk1/1PP5/5P2/7P/n6p/4r2P/r7/6K1 w - - 0 1 1-0 6.09 ∞ 24 1. Bb4 
21 V05 — 1w Salai 2011 12 7-5 0040.53 n Y 4K1k1/8/1p5p/1Pp3b1/8/1P3P2/P1B2P2/8 w - - 0 1 1-0 1.24 0.30 26 1. Kd7 
22 V06 71074 1w Benno 2004 10 7-3 3411.30 n n k1N5/1r1P4/8/KP6/7q/P7/6RB/8 w - - 0 1 1-0 15.79 0.00 22 1. Rg8 
23 V07 69009 1w Visokosov 2002 14 7-7 0071.44 n n B2k4/3Pp3/4P1P1/5p1P/1pK5/7b/5p2/2b2N2 w - - 0 1 1-0 0.28 0.28 23 1. g7 
24 V08 72886 1w Kovalenko 2006 13 6-7 0000.56 n Y 8/6Pp/p4K1p/P6p/8/P6p/Ppk4P/8 w - - 0 1 1-0 6.38 5.98 17 1. g8Q 
25 V09 72995 1w Sochniev 2006 8 3-5 0034.12 n n 2n5/1p2p2N/6P1/8/7k/2K5/8/6b1 w - - 0 1 1-0 2.42 3.59 23 1. g7 
26 V10 72386 1w Csengeri 2005 11 6-5 0700.42 n n 7K/1p1R4/1pP5/8/P7/P7/P1k3r1/3r4 w - - 0 1 1-0 3.29 4.08 23 1. c7 
27 V11 57418 1w Pervakov & Sumbatyan 1989 22 12-10 3812.66 n n 1N6/pq3P2/p2p4/P3k1B1/2RNp1r1/P1P1P3/2P1p1rp/4R2K w - - 0 1 1-0 9.11 9.11 17 1. Bf4+ 
28 V12 38172 1w Alekseev 1970 18 10-8 4825.23 n n 1K1n3B/r6q/pR6/k1pN1R2/p1P4r/P1N4B/Q7/8 w - - 0 1 1-0 12.66 0.32 19 1. Qb1 
29 V13 66438 1w Fiedler 1999 21 11-10 3111.78 n n 8/1p2Pq1B/3p2p1/3N1kp1/1P1P4/2pP2P1/p1Pp1pP1/5R1K w - - 0 1 1-0 3.69 13.55 22 1. Bg8 
30 V14 73873 1w Katsnelson & Sochniev 2007 8 3-5 0113.03 n n 8/K7/1B1n4/8/1p5k/p4p2/6R1/8 w - - 0 1 = -3.43 4.09 18 1. Bf2+ 
31 V15 73067 1w Ryabinin 2006 12 7-5 0300.63 n Y 8/2P3P1/1pPp4/p7/4P1PP/7K/4k3/5r2 w - - 0 1 1-0 9.28 6.96 21 1. g5 
32 V16 75276 1w Didukh & Masimov 2009 12 6-6 0311.34 n n 8/5p2/5P2/P7/3B4/8/pp2KPp1/r1k1N3 w - - 0 1 1-0 0.00 18.84 17 1. Be3+ 
33 V17 61165 1w Pervakov & Selivanov 1993 12 5-7 4070.23 n n b2q4/1kbP2p1/1B6/1QP5/8/7p/p7/7K w - - 0 1 1-0 5.49 ∞ 16 1. c6+ 
34 V18 59763 1w Elkies 1991 14 8-6 3002.54 n n 8/1p6/1p6/kPp2P1K/2P5/N1Pp4/q2P4/1N6 w - - 0 1 = -0.17 0.00 23 1. f6 
35 H17 3477 5b Saavedra & Barbier 1895 4 2-2 0300.10 Y Y 8/2P5/8/8/8/3r4/2K5/k7 b - - 0 1 1-0 ∞ 0.00 28 5... Rf3 
36 H18 69110 1w Kralin 2002 16 8-8 4130.55 n n 4R2K/3qb1p1/2p3kP/2P1p1p1/4p3/4P2P/2P5/6Q1 w - - 0 1 1-0 0.00 ∞ 24 1. Rg8 
37 H19 — 1w Krug 2012 18 8-10 4062.46 n n Q3b3/1p2q3/1p6/bp5P/1p6/1p6/1P1N1PPp/4NK1k w - - 0 1 1-0 0.00 0.00 21 1. f3 

Val. DEEP FRITZ 14, 2-core, 3ms8m F Position: 'FEN' Forsyth Extended NotationAuthor(s) Year m w-b# id HHdbIV
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tricked whereas a computer engine presumes its opponent is no more fallible than itself.8 The full Saavedra 
study behind H17 also emphasises that the first move is not necessarily the crux of the study. Therefore, finding 
the first move is no guarantee that the engine will reproduce the intended and presumably correct9 solution, 
within a prescribed time or at all. CRAFTY did not reproduce the identical mainlines of all studies in TS1/2.

H01, now proved sound (Nunn, 2012) after years of debate, continues to defeat the best engines despite its 
short solution. H02 is only 7-man but also defeats DF14. H18 and H19 also provide a significant challenge.
Fortresses, perpetual check, zugzwangs (especially if engines’ ‘null move feature’ cannot be switched off) and 
the 50-move draw rule continue to be factors which pose difficulties for chess engines.

My thanks to the authors cited, and particularly to Harold van der Heijden and Emil Vlasák for their test sets of 
compositions, and to future readers who contribute suggestions for test set TS3.
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ABSTRACT

Computational complexity of a computer game is an almost insurmountable obstacle in the process
of looking for an ideal solution. Nevertheless researchers in the field of computer games aim to find
such solutions, which may range from tractable to intractable. From the perspective of computa-
tional complexity, this article illustrates that n × n Chinese chess is intractable. The article starts
to introduce the notion of an EXPTIME-complete problem of computational complexity and give
as an example the G3 game. Then an n × n Chinese chess position (one rook and two queens) is
constructed, which consists of three essential components, viz. Boolean controller, switch, and the
crossing of clause-channel. The G3 game is simulated on the position, and it is proved that G3 is
reducible to the n × n Chinese chess position in polynomial time. From this result it is implied that
n × n Chinese chess is EXPTIME-complete.

1. INTRODUCTION

Computer game programmers have the task to let computers think on how to make moves that win the game.
Computer games are a challenging research field in artificial intelligence. The biggest hurdle of computer games
lies in the computational complexity. By classifying the complexity of problems we may understand how hard
it is to solve a game. Even if a problem is proved to be solvable with great difficulty (for example, it is NP-
complete, PSPACE-complete or EXPTIME-complete), seasoned researchers frequently need to spend too much
effort in looking for an efficient solving algorithm. Therefore, they are often looking for approximate solutions.
Yet, many scholars are still performing investigations on the computational complexity of computer games; for
instance, Chess (Fraenkel and Lichtenstein, 1981) and Checkers (Robson, 1984) were proved to be EXPTIME-
complete. The two publications used the G3 game, since this game had been proved to be complete in exponential
time (Stockmeyer and Chandra, 1979). In both publications (on chess and checkers) the G3 game was simulated
on an n × n chessboard and it was proved that G3 is reducible to generalized chess (checkers) in polynomial
time. As a third instance, we mention Go. Go was proved to be PSPACE-hard (Lichtenstein, 1980). (Still, Go
was also suspected to be EXPTIME-complete (Fraenkel and Lichtenstein, 1981)). Furthermore, Gobang (Reisch,
1980), Connect6 (Hsieh and Tsai, 2007) and Othello (Iwata, 1994) were proved to be PSPACE-complete. Later
on, the Generalized Geography Game (Sipser, 2006) was simulated on these generalized chessboards separately.
Amazons was proved to be PSPACE-complete (Hearn, 2005), and the Formula Game (Sipser, 2006) was adopted
during the process of its proof. Chinese chess is a time-honored board game and it is quite similar to chess. The
state complexity and game-tree complexity of 9 × 10 Chinese chess (Shi-Jim, Jr-Chang, and Tai-Ning, 2004) is
contrasted to those of chess (Chinchalkar, 1996; Allis, 1994) in Table 1.

Game State complexity Game-tree complexity
Chinese chess 48 150

chess 46 123

Table 1: Contrasting complexity of Chinese chess and chess (data is given as powers of 10)

1Supported by National Natural Science Foundation of China, ID61370153
2College of Information Science and Engineering, Northeastern University, email:tommy 06@163.com
3College of Information Science and Engineering, Northeastern University, email:xuxinhe@mail.neu.edu.cn



48 ICGA Journal March 2015

Table 1 shows that the state complexities of Chinese chess and chess are very close, but the game-tree complexity
of Chinese chess is much higher. It is thereby implied that Chinese chess is more difficult to solve. Now that
chess was proved to be EXPTIME-complete, it is believed that Chinese chess is EXPTIME-complete too.

1.1 EXPTIME-complete

EXPTIME indicates that a set of decision problems can be solved by a deterministic Turing machine in O(c p(n))
time (for some c and p being a polynomial where n is the length of the input). EXPTIME is not easier than
other complexities such as P, NP, NP-complete, and space complexities (i.e., PSPACE and PSPACE-complete)
(cf. Papadimitriou, 1994). A problem that is EXPTIME-complete is the hardest problem in EXPTIME. For the
precise definition of problems that are EXPTIME-complete we use the definitions of other EXPTIME complete
problems as given by Fraenkel and Lichtenstein (1981). They read as follows.

Definition 1: A decision problem B is EXPTIME-complete if it satisfies the following two conditions:

(1) B is in EXPTIME, and

(2) every A in EXPTIME is polynomial time reducible to B.

A decision problem is intractable if it cannot be decided by a polynomial time algorithm. For instance, the halting
problem is a well-known problem that is indecidable (cf. Sipser, 2006). Moreover, the succinctly circuit problem
is NEXP-time complete (cf. Papadimitriou, 1994). Below we discuss the G3 game.

1.2 G3 game

The ideas below are adopted from Fraenkel and Lichtenstein (1981, Section 2.2). The G3 game is a two-player
game. The players are R (Red) and B (Black). Every position in the G3 game is a 4-tuple (τ , R-LOSE(X,Y),
B-LOSE(X,Y), α), where τ denotes the player whose turn it is to play on the position, R-LOSE=C11 ∨ C12 ∨
C13 ∨ · · · ∨C1p and B-LOSE=C21 ∨C22 ∨C23 ∨ · · · ∨C2q are Boolean formulas in 12DNF, that is, each C1i or
C2j is a conjunction of at most 12 literals ( 1 ≤ i ≤ p) ( 1 ≤ j ≤ q). Each literal is a variable in X(or Y); α is an
assignment (0 or 1) of values to the set of variables X ∪ Y . The players play alternately. Player R (or B) moves
by changing the value of precisely one variable in X (or Y). In particular, passing is not permitted. Precisely, R
can move from (R, R-LOSE, B-LOSE, α) to (B, R-LOSE, B-LOSE, α’) iff α and α’ differ in the assignment of
exactly one variable in X, and R-LOSE is false under the assignment α. R(or B) loses if the formula R-LOSE(or
B-LOSE) is true after some moves of player R(or B). Stockmeyer and Chandra (1979) proved that this game is
EXPTIME-complete. The G3 game will be played on a position of n × n Chinese chess.

The idea is to reduce an arbitrary instance of a G3 game to a n × n chess position so that each variable in the
G3 game generates one rook and two queens. There are other pieces on the board that cannot be moved due to
a deadlock to form channels that the queens can pass to attack the kings. The rook can only be in two different
places which corresponds to the truth assignment of that variable. With the rook in either one place, one of the
channels opens up for the queen to attend. The challenge in Chinese chess is how to group pieces together so that
they are in a deadlock and form channels. Hence, the introduction of the cannon and the nine palaces is redundant
for our case. The introduction of the piece exchange zone is also unnecessary. In Section 2, we outline the course
of our proof and give the rules of n × n Chinese chess. In Section 3, we describe the construction of the special
position. In Section 4, we provide conclusions.

2. OUTLINE OF PROOF AND RULES OF N × N CHINESE CHESS

This article aims to prove that the problem of testing whether B(R) wins or not in a given arbitrary position is
EXPTIME-complete. Based on the definition of computational complexity’s complete problem (Fraenkel and
Lichtenstein, 1981), the steps of the proof are as follows:

1) Prove that the n × n Chinese chess is in EXPTIME;

2) construct a position and show that the G3 game is reducible to the Chinese chess position;
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3) prove that the transformation (i.e., construction of the given position) is completed in polynomial time.

2.1 Definition of n × n Chinese chess

We remark that only a finite number of different game positions may occur on a chessboard with a fixed size (e.g.,
9 × 10 Chinese chess or 8 × 8 chess). This means that the number of possible positions is a constant. Current
methods of research on computational complexity are asymptotic. Hence, they apply only to the rate of growth of
the complexity as the problem size increases. Therefore the size of the problem must be generalized. This comes
down to the fact that the size is arbitrary (cf. Sipser, 2006).

Definition 2: Let n × n Chinese chess be defined as follows. Given an arbitrary position of a generalized Chinese
chess on an n × n chessboard, can Red (Black) win from that position? The rules of pieces of n × n Chinese
chess are the same as those of 9 × 10 Chinese chess, which are listed below.

(i) The chariot moves and captures in any distance orthogonally, but may not jump over intervening pieces.

(ii) The horse moves and captures one square orthogonally and then one square diagonally away from its former
position.

(iii) The cannon moves like chariot, any distance orthogonally without jumping, but can only capture by jumping
a single piece along the path of attack.

(iv) The soldier moves and captures by advancing only one square before it crosses the river. Once the river is
crossed, it may also move and capture one square horizontally.

(v) The elephant moves and captures exactly two squares diagonally. It cannot cross the river.

(vi) The general and advisor cannot leave the nine palaces and the advisor moves (or captures) one square diago-
nally.

(vii) The river is at the (n/2)th line on the n × n board (the river does not appear in the constructed position
because that does not affect the construction and the proof in this article).

Moreover, the number of all kinds of pieces (except for the only one general of each side) will be generalized to
m. Red (Black) wins the n × n Chinese chess iff Black (Red)’s general has been captured. The main difference
between Chinese chess and chess are the nine palaces. The size of the nine palaces will be expanded because the
chessboard is generalized (shown in Figure 1). �

2.2 The computational complexity of n × n Chinese chess

Theorem 1 n × n Chinese chess is in EXPTIME.

Proof. Assume that the computer needs a unit time when it handles a position of Chinese chess. Then the sum
of possible positions of n × n Chinese chess is the upper limit of time to solve n × n Chinese chess. Because
the force of Chinese chess is fourteen, the upper limit of possible positions sized by n × n is 15n×n. Thus n × n
Chinese chess is in EXPTIME.

3. CONSTRUCTION OF THE POSITION

In this section, a position (i.e., instance) of n × n Chinese chess will be given and an arbitrary G3 game will be
simulated in it. The main idea of the construction is that those and only those truth-assignments to the variables
which win the G3 game for R (B) lead the chariot of Red (Black) to win the n × n Chinese chess from the
constructed position. Both sides use the chariot to capture or exchange pieces. R (B) wins the game if R (B)
needs fewer moves to capture the general of the other side than B (R). This means that, R (B) of the G3 game has
a winning strategy if and only if R (B) of the n × n Chinese chess has a winning strategy in the given position. In
3.1 we describe the gadgets, and in 3.2 we give the winning strategy.
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3.1 Illustration of gadgets

The features of the G3 game will be considered. Changes are called gadgets. Obviously, the rules of Chinese
chess cannot be violated during the construction. Some gadgets refer to construction ideas of chess (cf. Fraenkel
and Lichtenstein, 1981) and checkers (cf. Robson, 1984). The Boolean controller and the Switch (3.1.2) are
designed to realize the assignment of the values true or false to a variable of the G3 game. The crossing of clause-
channel and literal-channel (3.1.3) is designed to calculate the Boolean value of the formula R-LOSE(B-LOSE)
of the G3 game. Because the rules of Chinese chess differ from those of chess, the layout and pieces used in
the gadgets are quite different. Moreover, according to the rules of Chinese chess there should be some moves
that produce captures, therefore the Piece-exchanging zone and the Delay-area of the constructed position can be
used to realize this process. (Not to complicate matters we leave the process out of the contribution). The most
prominent difference between Chinese chess and other chess games lies in the nine palaces (see Figure 1). What
is the general’s activity? Each piece must pass the general to capture him, so a gadget of the position is designed
to simulate it. However, it is not necessary for our problem at hand and therefore it is left out. Above all, the given
position contains a Boolean controller (Figure 2), a Switch (see Figure 3) and a Crossing of the clause-channel
and literal-channel (Figure 4). These three gadgets form the essentials for the position of n × n Chinese chess
under investigation in this contribution.

Figure 1: The initial nine palaces Figure 2: Red Boolean controller

3.1.1 Boolean controller

The Boolean controller (called BC for short) is designed to realize the assignment of the values true or false to
a variable of the G3 game. Figure 2 shows the structure of the red Boolean controller (RBC). RBC includes red
soldiers (RS), red elephants (RE), a red chariot (RCT), red horses (RH), red cannons (RC), and a black chariot
(BCT). It also contains (1) a literal (i.e., x and ¬x)-channel (corresponding to the literal that the clause of G3

game contains, if BCT leaves the RBC via x-channel, the variable x is assigned to 1; if BCT leaves the RBC via
¬x-channel, the value of the variable x is 0) and (2) a red Clock channel. A black Boolean controller (BBC) is
obtained from a RBC by an interchange x ↔ y, ¬x↔¬y, red ↔ black throughout, followed by a 180◦ rotation.
There is one R (B) Boolean controller for each x ∈ X(y ∈ Y ). In normal play, R (B) can move one RE (BE),
one RCT and one BCT in any R (B) Boolean controller. All other pieces are deadlocked, but they may capture
the opponent’s pieces passively according to the rule. The positioning of the deadlocked pieces forces the chariot
to move through predefined channels in order to reach the opponent’s general. At the beginning R must move RE
to the north or south intersection with the dashed outline (RE’s first move has only two possible choices), the two
moves determine via which literal-channel BCT leaves RBC. The irrelevant moves in the BC are ignored in this
contribution.

3.1.2 Switch

The Switch is designed to make sure that (1) only one opponent’s chariot can reach the clause-channel and (2)
the opponent’s chariots at a clause-channel cannot go back to Boolean controller via literal-channels. Figure 3
shows the structure of the Switch. When a BCT comes via an RBC to an R Switch, it captures the RH on the
longer longitudinal path and then proceeds down unperturbed to the C1i-channel. If a BCT attempts to pass the
R Switch in the opposite direction, aiming to reach the north corner of the longer longitudinal path, the RE at
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Figure 3: Red Switch Figure 4: crossing of C1i-channel and literal-channels

the southeast of the captured RH will go to the northwestern intersection and thus will open up a line of many
RCs effectively covering the their eastern horizontal shorter path of the Switch, making the BCT impassable.
Similarly, the BCTs at the C1i-channels cannot go back to the Boolean controller.

3.1.3 C1i-channels

The clause-channel corresponds to C1i (the ith clause) or C2j (the jth clause) of the Boolean formula R-LOSE
(B-LOSE) in the G3 game. According to the definition of the G3 game, every clause contains some literals and
the value of the conjunction which is the value of the clause. If the number of BCTs that stop unperturbed at
the clause-channel equals to that of the literals contained in this clause, the value of this clause is true, i.e., the
formula R-LOSE (B-LOSE) is true. Figure 4 shows the crossing structure of clause-channels and literal-channels.

As mentioned above, BCT gets to the C1i-channel from the Switch via the literal-channel (e.g., x-channel). Only
if x(¬x) ∈ C1i holds, then BCT can stop unperturbed correspondingly at the intersection of the C1i-channel and
literal-channel, and finally get to the Piece-exchanging zone via C1i-channel. Otherwise, the BCT cannot stop
at the intersection because it will be captured by RH at the southwest of the intersection (shown in Figure 4),
and then the number of the BCTs that reach the Piece-exchanging zone is not sufficient to capture the opponent’s
general. The irrelevant moves of this gadget will be ignored in this contribution.

3.2 Winning strategy

To make the global structure clear, at the south (north) of Figure 5 the overall nine palaces are divided into several
channels which the BCTs must pass. The general appears at the southernmost (northernmost) row. In fact, the
overall nine palaces consist of all these channels and one general. Figure 5 shows the overall structure of the
construction. It forms a position of n × n Chinese chess on which the G3 game can be simulated.

3.2.1 B’s winning strategy

Assume that the RCT leaves an RBC via the Red Clock channel after the BCT has left the same RBC via the
x (¬x) channel. The BCT needs 3 moves to leave RBC (shown in Figure 2) and another 6 moves for reaching
the C1i-channel via the Switch (one move for reaching the Switch and one move for leaving the RBC refer to
the same move), thus it spends m = 9 moves reaching the C1i-channel. When there are p (p is the number of
literals that the C1i contains, and 1 ≤ p ≤ k ≤ 12) BCTs that stop unperturbed at the C1i-channel, B will
move each of them down the C1i-channel towards the Piece-exchanging zone. As mentioned above, these BCTs
have to exchange pieces with a line containing precisely p − h (h is odd and 1 ≤ h < p) RCs at this zone,
so B spends p − h + 1 moves in exchanging pieces. For the rest of the BCTs holds: each BCT needs another
one move (they have to pass an inflection point) to get to the nine palaces. There are 2 × (h − 1) advisors and
every two advisors can capture one BCT, so the BCTs have to exchange pieces with these advisors. At the nine
palaces, the BCTs need one more move to capture another advisor after capturing two advisors, thus B needs
2× (h− 1)+2× (h− 1)÷ 2− 1 = 3h− 4 moves at the nine palaces. At last, the only one BCT checkmates the
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Figure 5: Global view of the construction for the case R-LOSE = C11 ∨ C12, C11 = x1 ∧ ¬x2 ∧ ¬y, C12 =
¬x1 ∧ x2; B-LOSE = C21 ∨ C22, C21 = x1 ∧ y, C22 = ¬y

opponent’s general after two moves. Above all, B spends m×p+p−h+1+h+3h−4+2 = (m+1)×p+3h−1
moves in playing the game, because m = 9, the totality is 10p+ 3h− 1.

Below, we examine in how many moves the BCT leaves the RBC. RCT needs 3 moves to leave the BC; the
RE in the RBC makes one move according to the rule. At the Piece-exchanging zone, R spends p − h moves
in capturing the opponent’s p − h BCTs. At the nine palaces, RAs capture h − 1 BCTs, so R needs h − 1
moves in that area. At the Delay-area which consists of 12k − 5 RHs, R needs 12k − 5 moves to capture these
RHs; at last R needs two moves to capture the opponent’s general. Accordingly, the total moves R needs are
3 + 1 + p − h + h − 1 + 12k − 5 + 2 = 12k + p, because 1 ≤ p ≤ k ≤ 12 and 1 ≤ h ≤ p − 1, R needs one
more move than B to play the game. Above all, B wins with a margin of one more move.

3.2.2 R’s winning strategy

B needs p BCTs that can stop unperturbed at one C1i-channel and every BCT needs m moves to reach the
channel, but it is possible that C1i = 0. For example, C11 = x1 ∧ x2 ∧ y1, the move that the BE in the BBC
makes determines the value of the variable y1. If the move makes BCT leave the same BBC via ¬y1-channel,
the value of y1 is 0 (false), i.e., C11 = 0. Because C11 = 0 (that is to say, the value of R-LOSE is false),
every of BCTs (assume that the number of the BCTs is z ) that stops at the C11-channel requires at least one
move to reach another C1i-channel, where C1i = 1. If the number of literals that the C1i contains is k (the
k is the maximum number of literals that a clause contains and 1 ≤ k ≤ 12) and the Piece-exchanging zone
connected to the C1i contains only one RC (i.e., h = k − 1), the total moves that B needs to play the game is
10k + 3(k − 1)− 1 + z = 13k − 4 + z, because the total moves of R is 12k + k = 13k, thus R wins the game
when z > 4.

4. CONCLUSIONS

Based on Section 3, we arrive at the following.

Lemma 1 G3 game is reducible to n× n Chinese chess in polynomial time.
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Proof. According to Section 3, an arbitrary instance of the G3 game was simulated and solved on the given
position. This means, that a given position of n×n Chinese chess can solve an arbitrary instance of the G3 game.
That is to say, there exits such reducibility that can convert an arbitrary G3 game to the given position of n × n
Chinese chess. According to definition 3 of reducibility (see below) we will make the next step in the proof.

Definition 3 (Sipser, 2006) Problem A is reducible to problem B. If there is a computable function f : where for
every w, w ∈ A ⇔ f(w) ∈ B, the function f is called the reduction of A to B.

Based on the above definition, it follows that the G3 game is reducible to n × n Chinese chess. Next it is
necessary to estimate how long it takes to construct the position in Section 3. Assume that m is the sum of the
variables contained in the 4-tuple and in the constructed position every variable corresponds to one BC, four
literal-channels, four Switches, one Clock channel and four clause-channels (as shown in Figure 5, if certain
literal is not in any clause, its channel is truncated prior to reaching the crossing of its channel and a clause-
channel). As mentioned above, every channel-segment or shield around each channel is at the length of 13k (i.e.,
O(k)) which is a constant, and the sum of the variables is m, so the total size of the construction is O(m × k).
Thus the construction can be completed in polynomial time. �

Theorem 2 n× n Chinese chess is EXPTIME-complete.

Proof. Firstly, according to Theorem 1, it follows that n × n Chinese chess is in EXPTIME. Secondly, because
it has been proved that the G3 game is EXPTIME-complete (Stockmeyer and Chandra, 1979) and based on
Definition 1, it can be proved that all problems that are in EXPTIME may be reducible to the G3 game in
polynomial time. On the base of the transferable feature of reducibility (cf.Sipser, 2006) and Lemma 1, it can be
proved that all problems that are in EXPTIME may be reducible to n× n Chinese chess.

From the above two points, it proves that n× n Chinese chess is EXPTIME-complete. �

5. REFERENCES

Allis, L. V. (1994). Searching for Solutions in Games and Artificial Intellingence. Ph.D. Thesis, Maastricht
University, Maastricht, the Netherlands. ISBN 90–9007488–0.

Chinchalkar, S. (1996). An Upper Bound for the Number of Reachable Positions. ICCA Journal, Vol. 19, No. 3,
pp. 181–183.

Fraenkel, A. S. and Lichtenstein, D. (1981). Computing a perfect strategy for n × n chess requires time exponen-
tial in n. Journal of Combinatorial Theory, Vol. 31, No. 2, Series A, pp. 199–214.

Hearn, R. A. (2005). Amazons is PSPACE-complete. arXiv:cs.CC/0502013v1.

Hsieh, M. Y. and Tsai, S.-C. (2007). On the fairness and complexity of generalized k-in-a-row games. Theoretical
Computer Science, Vol. 385, pp. 88–100.

Iwata, S. and Kasai, T. (1994). The Othello game on an n × n board is PSPACE-complete. Theoretical Computer
Science, Vol. 123, pp. 329–340.

Lichtenstein, D. and Sipser, M. (1980). Go is polynomial-space hard. Journal of the ACM, Vol. 27, pp. 393–401.

Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley. ISBN 0–201–53082–1.
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GAME OVER, ARIMAA?1

Andy Lewis2

Manningtree, Essex, UK

ABSTRACT

In an earlier article (Lewis, 2015) I introduced Kingpin readers to Arimaa, a recently 
invented and hitherto almost unknown chess variant. I argued that Arimaa has a comparable 
beauty and complexity to chess, but a much higher potential (given the lengthy history and 
extensive theory of chess) for creativity and originality.

This article recounts the extraordinary events of the Arimaa 2015 Computer Challenge.  It 
offers a third-party, non-technical account of one of the key innovations that led to the 
triumph of SHARP & David Wu. It poses the question whether there is any reason left for 
Arimaa to exist, suggesting that even to survive it must rapidly emulate the technical 
innovations introduced within Chess in the past two decades. Finally, it reflects on how the 
community might regroup following Omar Syed’s sad announcement (May 2015) that he will 
step down as leader of the Arimaa world.

1. THE RISE OF THE MACHINES

Supporters of the humanoid team for the 2015 Arimaa Computer Challenge (see Website 1) could have been 
forgiven for a sense of complacency. The Challenge match is between the world’s strongest bot (computer 
program) and a team of 3 elite human players. The competition consists of a 3-game match between the bot and 
each of the humans, and the bot is required to win all three of the individual matches. A significant incentive is 
a $12,000 prize for the winning programmer to first accomplish the Challenge.

Although, this competition has been running annually since 2004, there have only been two occasions in which 
even one member of the human team has been defeated over 3 games. That was in 2010 and 2012, but even then 
silicon suffered a convincing defeat, each time by an overall 3-6 margin.

Could 2015 really be any different? Portents prior to the start of this year’s Computer Challenge were ominous.
In the Computer World Championship (March 2015) (see Website 2) bot SHARP flattened 9-0 the rival 
pretenders to the silicon crown. David Wu is the human intelligence behind SHARP and had previously taken the 
Computer title in 2011 and 2014, but by the more seemly margin of 7-2 both times.

Next up were the Screening Games (March-April 2015). This is 
an elimination contest between the top two bots from the 
Computer World Championship. Any human brave (or foolish) 
enough could take the field, and the bot which does best against 
the cannon fodder gets a shot against the elite humans. This was 
simple target practice for SHARP who demolished all-comers by 
28-2. Its remaining rival, bot Z, was less accurate, with a meagre 
18-10 score line against the same opposition.

The honorable exception was Karl ‘Fritz’ Juhnke (former world 
champion) who scored 50% over two games. His marathon 93 
move victory over SHARP (see Website 3) is a masterful 
exemplar of anti-computer strategy.

1 This contribution (now titled: Game Over, Arimaa?) is a slightly adapted version of Andy Lewis’ article titled Arimaa: 
Game Over? published in Kingpin Chess Magazine, July 11, 2015. The ICGA Journal Editor is grateful for the permission by 
the author and the Editor-in-Chief of Kingpin Chess Magazine, Jonathan Manley, to include this version in our Journal.
2 Andy Lewis is a former Executive Director with Nomura Securities, Japan. He holds a PhD in Philosophy (UCL 1988) and 
was 1980 British Under 21 Chess Champion.

Fritz Juhnke (twice world champion): 
tied 1-1 with SHARP.
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The only other blow to SHARP was delivered by the rising star of Arimaa-land, John ‘deep_blue’ Smith of 
Germany, who demonstrated that the bot’s ability to assess material imbalance is still hardly flawless (see 
Website 3 for both games).

Its silicon rivals now bested, SHARP then took its seat in the 2015 Computer Challenge. The Imperial Guards
were led by Mathew Brown (newly crowned 2015 world champion) and Jean Daligault (2014 world champion). 
The third team member was Lev Ruchka who, though never placed on the podium in a world championship, is 
an experienced and respected player within the Arimaa community. This is one of the strongest humanoid teams 
ever to have faced the bot onslaught. It could hardly have gone worse for the humans.

Arimaa-land was dismayed to find the humanoids trailing 0-
3 after Round 1, then staggered by the 0-6 deficit after 
Round 2. Only a late rally of human intelligence in Round 3 
provided the sour consolation of a couple of elegant wins 
for Mathew Brown and Jean Daligault. But an overall 2-7
defeat left no room for doubt – or hope. On 18 April 2015, 
the Computer Challenge, which had stood for 11 years, was 
now lost.

The Holy Grail of Arimaa-land had been surrendered 
almost without a fight: what on earth happened here?

At the Computer Challenge Award Ceremony (9 May 2015), Jean dismissed any notion of a statistical fluke, and 
was fulsome in his praise of his computer opponent, describing it as “very, very strong, but in a few positions, 
it’s making big mistakes”. Commenting on whether SHARP had now better assimilated the lessons of his 2011 
work (see Daligault, 2012) than any of his other (human) opponents, Jean responded that SHARP has actually 
expanded our conception of Arimaa techniques: to the point where now it is us humans who should start to learn 
from SHARP’s play. Gasp!

The explanation of why SHARP won the 2015 Computer Challenge is depressingly familiar to anyone who 
witnessed mankind’s toppling from the chess-throne in 1997: face it, guys, it’s better than us!

2. GENESIS OF A TERMINATOR

The bot SHARP and David Wu are no strangers to Arimaa Computer tournaments. SHARP first entered the lists in 
the 2008 Computer Championship, and achieved a respectable second place behind bot BOMB (programmed by 
David Fotland) – the dominant engine of the early Arimaa years.

Indeed, as reigning 2014 Computer World Champion, SHARP could have represented silicon honour in the 
Computer Challenge last year. However, bot ZILTOID (programmed by Riccardo Barreira) performed fractionally
better in the Screening Games. ZILTOID lost the 2014 Challenge by the convincing margin of 2-7, so the 
implication is that even as late as 2014 SHARP would also have lost, by a similar or even greater score line. What 
did David Wu do between the 2014 and 2015 Computer Challenges that was so radically different? The simple 
and surprising answer seems to be: not very much!

Top Arimaa (and chess) engines use a move search technique known as “iterative-deepening, depth-limited 
alpha-beta” (or “alpha-beta” for short) (see Wu, 2011, p. 13). What this means roughly is that an engine looks at 
all variations to a given depth, discards the obviously rubbish ones, then does a deeper dive on the remainder.
This process is iterated a number of times (assuming a forced end to the game is not found) until a time or depth 
limit is reached, when the residual node positions are compared using an evaluation function.

Now, the efficiency of any alpha-beta search can be dramatically improved, by looking at the more promising
candidate moves first (see Wu, 2011, p.17). But the problem of how to arrive at a move selection ordering for an 
Arimaa engine is even more pressing than that for chess (or Go): since there are so many alternatives 
(approximately 16,064 for the average position (see Wu, 2011, p. 9). How could a computer ever rank such a 
vast number of alternative moves, without first doing some in-depth analysis?

In 2011, for his Harvard BA thesis in Computer Science, David defines an expert prediction methodology for 
Arimaa (see Wu, 2011, pp. 17-38) – based on one already successfully deployed for Go. David’s methodology 

Jean Daligault (six times world champion): 
defeated 1-2 by SHARP.
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specifies several hundred “features” of an Arimaa move, which might be ascertained by direct inspection, rather 
than in-depth analysis. Example types of features are material (whether a piece is won/lost), mobility (whether a 
piece is frozen/freed), and direct threats (whether a goal is threatened on the next move). A large sample of 
“expert” games (initially those played by humans rated above 1800) was then surveyed to determine to what 
extent these features are present in actual moves played by the experts.

This data can then be used to attempt to predict what move an expert is likely to make in a position outside the 
sample, based on the extent to which these features are present in the moves available from that position. David 
looked at various algorithms for generating predictions, and showed that accurate prediction of expert moves is 
indeed possible: for the most promising algorithm he examined in 2011; 90% of the time the experts’ actual 
move fell within the top 5% ranked by feature (cf. Wu, 2011, pp. 37-38).

The power of such an approach is immediately obvious. It would combine the human expert’s intuitive, 
immediate judgements about what candidate moves “make sense” with the computer’s remorseless ability to 
grind-out zillions of variations.

Golly! It’s that simple! But does this approach actually work? Yes it does. This move order function described in 
his thesis was the basis of the SHARP engine which won the 2011 Computer Championship, but, David tells me, 
has not been vastly altered in the 2015 version. The prediction engine has, however, been increasingly hardened 
by comparing the output of the selective move generator with actual moves chosen by the strongest human 
players – which would, of course, improve in quality over the 2010-15 period.

The overall architecture, therefore, appeared to have been established in 2011, and what David has been doing 
since then is basically refining and perfecting his initial concept. David’s own metric describing the 2010-15 
development process is that while numerous discrete improvements were effective, no single enhancement 
contributed more than 10% to the total improvement.

But, even if the initial conception was fundamentally sound, is it really credible that small improvements could, 
all of a sudden, result in bot SHARP just blowing away the opposition? That sounds just crazy!

Well, not at any rate, to the early eighteenth-century philosopher, Georg Hegel (1814) it looked as follows.
“The common view has it that when we speak of a growth or a destruction, we always imagine a gradual growth 
or disappearance. Yet we have seen cases (…) which (…) involve (…) not only a transition from one proportion 
to another, but also a transition (…) an interruption of a gradual process, differing qualitatively from the (…)
former state.’’

A series of incremental, quantitative improvements has morphed a dangerous, but (at the highest level) 
eminently beatable, SHARP of 2011-14 into the terrifying, qualitatively unrecognizable, Terminator of 2015.

David has now delivered his paper to the ICGA Journal describing how he achieved his success in the Computer 
Challenge. (That was a condition of his $12,000 prize.) I should probably shut-up now, and apologize to David 
for pre-empting his detailed & canonical explanation. Let the final word on this matter be his!

3. JUDGEMENT DAY

Does Arimaa even have a future? Will it survive bot SHARP’s sudden and dramatic dethroning of humanity from 
the Arimaa summit? Received wisdom among Arimaa hard-core devotees is: yes, of course it will – just as chess 
survived, even flourished, after Kasparov’s defeat by DEEP BLUE in 1997. It’s a comforting line only for the 
faithful.

Chess had a rich culture, history and literature prior to its computerization. The number of chess-players has 
been variously estimated; however a hard figure to focus on is the 520,000 or so named on the 2015 FIDE rating 
list (see Website 4).

Of course, this metric does not do justice to the popularity of chess, and will not include all club, 
correspondence, internet & social players. Indeed, if you really want to ramp up the number, you might as well 
throw in even those who can just about set up the initial position without too many mistakes. This may even 
stretch the total to the jaw-dropping headline of 600 million players worldwide arrived at by the 2012 YouGov 
survey commissioned by AGON, and endorsed authoritatively on the FIDE website (see Website 5). But 
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honestly, surely not even FIDE needs to descend to statistical manipulation to demonstrate the global cultural 
entrenchment of chess?

Arimaa’s roots are somewhat shallower, a twelve year history, two published books (Juhnke, 2009; Daligault, 
2012) (or three if you count the Wiki-book, see Website 6) – with perhaps around 500 active players worldwide.
Why bother to learn a chess-like game with only an eclectic, scattered band of followers: when you can just play 
chess, with perhaps almost a million times as many opponents?

Arimaa has set its stall out as “the game of real intelligence” supposedly requiring a type of abstract reasoning 
ability available to humans, but not to computers. Bot SHARP has now dismantled this advantage: Arimaa is no 
longer anymore “computer-resistant” than chess.

And, with the benefit of hind-sight, perhaps the “computer-resistance” of Arimaa was always over-egged. 
Research on chess-playing software commenced in the 1950s and, with considerable commercial backing, 
eventually resulted in Kasparov’s debacle against DEEP BLUE some four decades later. Research on Arimaa-
playing software commenced around 2003, with zero commercial backing and a considerably smaller group of 
programmers, resulting only 12 years later in SHARP’s victory.

Clearly, this data is susceptible of multiple interpretations, but could be used to argue that Arimaa was actually 
less computer-resistant than chess! Perhaps, it just took one exceptionally talented software engineer, working on 
the problem persistently over seven years, to land a solution.

Moreover, while detracting nothing from David Wu’s triumph, let’s be clear about what has not been achieved.
What characteristics define human thought? Self-awareness, creativity, abstraction, the freedom to formulate 
rules, but also to modify or even break them? If it set out to create a thinking machine, the Chess-AI project 
failed laughably.

But has the Arimaa Computer Challenge, by this standard, done any better? No: SHARP has none of these 
qualities, or if it does, they are irrelevant to its success. Just like any other Arimaa (or chess) engine: SHARP is 
nothing more than a highly superior mechanized abacus. However, computer resistance was only one plank in 
the Arimaa USP: even if removed, isn’t it still a game with excellent potential and interest? Certainly! But to 
achieve that potential, Arimaa-land needs to step up at least a couple of gears.

4. WHAT CHESS CAN TEACH ARIMAA

Arimaa must radically expand its franchise. It has nowhere near the critical mass it needs to ensure long-term 
survival. It needs to go mainstream. Face-tournaments with elite players are always a great way to generate 
publicity.

Want chess-GMs to participate in Arimaa tournaments? Easy: show ‘em the money!

But this means normalizing Arimaa playing conventions, standards and conduct to that of the wider gaming 
community: something for which Arimaa-land demonstrates little appetite. And it badly needs some sponsorship 
deals, something which the paltry number of current followers – dedicated though they are – renders somewhat 
implausible. Even if Arimaa-land could survive purely confined to the on-line medium, the opportunities for 
improvement are self-evident. The front-end needs a refresh, and the creaking web-services on which the Arimaa 
game-room is hosted require a significant overhaul. These will require volunteer technical effort and/or funding.

Perhaps we will soon see bot SHARP or its counterpart available from the App Store and distributable to any 
smart phone. This means that to retain its credibility as a mind-sport, Arimaa, like chess, must introduce 
significant anti-cheating technology: a problem made still more pressing for Arimaa, if there is no face-to-face 
play to validate an individual’s playing strength.

Bizarrely for a community so obviously rich in software expertise, Arimaa-land appears somewhat under-
computerized. The Arimaa community has reliably provided an abundant harvest of new and improved bots each 
year: around 200 bots are available from the Game Room. But how about leveraging the engines to provide 
practical, targeted help for us patzers? 

For example, an ancillary function might point an Arimaa position at a specified engine and generate an 
immediate set of candidate moves with evaluations. Perhaps the function could even automatically annotate an 
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entire game. And wouldn’t Arimaa players like to annotate and learn from their own and each other’s games, not 
just with text comments, but with representations of the other likely paths the game might have taken? How 
about an “ArimaaBase” containing all games of note, and those between the top players annotated in depth, with 
a flexible GUI-based querying capacity?

Of course, the equivalent tools have been available to chess-players since the mid-1990s, and are now an 
essential part of any serious player’s armoury. And this stuff is cheap and easy to use: anyone with a decent 
laptop and $200 to spend can have a +3000 ELO engine at their command and more shrink-wrapped chess 
knowledge than you can shake a stick at.

Is the chess-player simply expected to forgo these tools when he journeys into Arimaa-land? Really?

5. A CHAPTER CLOSES

Yet Arimaa might surmount all of these challenges. But not, perhaps, without someone with Omar Syed’s vision, 
integrity and zeal at the helm.

Omar started work on designing an original game in 1997 following Kasparov’s defeat by DEEP BLUE. That 
creative process led to invention of Arimaa around 2002. He developed the Arimaa website and Game Room and 
financed the hardware used to host it. He devised and stumped up the lion’s share of the prize for the Computer 
Challenge, which commenced in 2004. He boot-strapped the Arimaa strategy. He led mankind in the early bot 
wars, only standing down when sufficiently strong humanoid players had emerged to relieve him.

Everything unique about Arimaa has Omar’s imprint on it: from the sui generis time-control rules, to the unique 
tournament format for the World Championship. I have no specific evidence for it, but I suspect Omar is still the 
guy doing most of the production and user support on the game room servers and website. All this is done 
without pay or profit in the service of a vision. If only electronic distribution of these was possible, he would
probably provide free beer and pizzas to the Game Room players!

In some ways, it would be helpful if Omar could be less modest and specifically credit his contributions to every 
aspect of the game on the Arimaa website. This will be useful when he decides to step down from his lead role in 
the game, so we understand what jobs now need to be filled. Because, sadly, this is now what has actually 
happened. In a further blow to the beleaguered Arimaa community, Captain Omar announced to a stunned 
audience at the Computer Challenge Award Ceremony that, after the best part of two decades, he is standing 
down from the wheel.

Arimaa without Omar is almost unimaginable: how shall Arimaa even survive, still less flourish, without Omar?

6. THE WHITE KNIGHT?

David Wu is clearly on board Arimaa for the long-haul. His association with the Arimaa community commenced 
in 2007, and although this decade he has spent most of his Arimaa-related time on bot development, he is still a 
strong player who can hold his own in the world’s top 10.

Harvard educated, and now working in New York, David currently balances a mixture of software development 
and research within the financial industry. With the massive achievement of the Computer Challenge now on his 
CV, surely David will soon have Wall Street Heads of Algo Trading beating on his door, demanding his 
services. The new poster boy of Arimaa-land would certainly be well positioned to look for that much needed 
Corporate Sponsorship.

Is David the new White Knight? Commanding respect from geek and gamer alike, David is ideally placed to lead 
the faithful in the next phase of the Arimaa voyage.

In a gracious acceptance speech at the Computer Challenge Award ceremony, David announced that he plans to 
plough back his $12,000 award into the game, unveiling plans for a new and improved Arimaa Game Room, 
with other ideas to follow. There is so much that can be done for Arimaa, but the Game Room is the shop 
window: this is the right place to begin.
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Within only a couple of days of the announcement of the Game Room 
re-write, David had already assembled a crack team of six volunteers 
to work on this project. The collaborative culture of Arimaa-land, 
together with its depth of technical expertise, generate a sense of 
optimism that this project will succeed. The post-Omar epoch is 
already off to a promising start. One can only wish David and co every 
success!
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8. APPENDIX: 2015 WORLD CHAMPIONSHIP – THE CLINCHER

The 2015 World Championship was decided in an elimination battle between Karl Juhnke (aka “Fritz”) World 
Champion in 2005 and 2008 and Mathew Brown (aka “Browni”) runner up in 2014 and currently the world’s 
highest rated humanoid player.

The final game (see Website 7) reached Position 1 below after 40 moves.

Position 1: Mathew Brown – Fritz Juhnke
World Championship 2015
Gold to play 41g

The material balance is slightly in Gold’s favour with Silver having only a Dog and Rabbit to show for his 
Horse. However, this is the very least of Silver’s problems.

Note first the over-ambitious Silver Elephant on e3, cut off from the rest of the Silver army, almost smothered
(cf. Juhnke, 2009, pp. 95-105) by a combination of Gold and Silver pieces, and nearly out of moves. Secondly, 
Silver’s best hope of relieving the beleaguered Elephant, the Camel on g4 is frozen by the Gold’s Elephant on 
g5. If the Silver Elephant did make a bolt for freedom, by suiciding the Silver Rabbit on d3 into the c3 trap, then 
darting back via d3 and d4 to join the rest of the Silver forces, the g4 Silver Camel would rapidly get dumped in 
the f3 trap. Thus, the Silver Camel is said to be hostaged (cf. Juhnke, 2009, pp. 111-128) by the Gold Elephant.

But if Silver’s Elephant can hardly move, and Gold’s Elephant is required to keep Silver’s Camel under lock and 
key, does this equate to an impasse? No. Because, thirdly, Gold’s Camel on b6 is now the strongest free piece 
(cf. Juhnke, 2009, p. 97). Its main adversary, the Horse on c6, can do nothing except defend passively against the 
Camel’s threats: active counter-attack would result in quick material loss. The accumulation of the above 3 
factors, equates to an exceptionally difficult position for Silver.

Rather than try to force home his advantage, Browni choose a subtler and more poisonous method. 3-time 
repetition is not a draw in Arimaa (as it is in chess): rather the side that might seek to repeat for the third time is 
forced to vary the position. Gold has far more freedom in the above diagram than Silver, therefore by nimbly 
pirouetting his Dog and Cat around the c3 trap, Browni slowly and insidiously wrested a series of almost 
intangible concessions from Fritz.
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This torture continue for a further 40 moves culminating in Position 2 below.

Position 2: Mathew Brown – Fritz Juhnke
World Championship 2015
Gold to play 80g

At first glance it might seem that not so much has changed about the position: the only material transition is the 
loss of a solitary Silver Rabbit. However, the experienced Arimaa player immediately notices the key 
differences. Firstly, the Silver Elephant (now on d3) has no legal moves whatsoever. Secondly, Gold Camel has 
now frozen the sole Silver Horse on c8 – indeed it is only the Silver Dog on c5 which prevents an immediate 
capture. Thirdly, all of the Silver Rabbits have been lured forward to the 5th rank or beyond, where they can play 
only a limited part in defending the Silver home traps (c6 and f6) against captures, also leaving Silver vulnerable 
to Rabbit advances to the goal-line.

The resulting position is now hopelessly lost for Silver, and there are perhaps any number of winning methods. 
Merciful at last, Browni dispatched Fritz in the most economical fashion, displacing the Silver Cats on g5 and 
h5, then marching his unopposed h-Rabbit to the 8th rank.

A cruel end to his hopes of regaining the World Championship, Fritz’s role at the conclusion was reduced almost 
to that of a teaching-aid.

Browni’s play is a text-book demonstration of a number of key Arimaa strategic themes uncovered over the past 
decade, many by Fritz himself. But least the younger generation of Arimaa players give themselves airs, they 
need to remind themselves that only an exceptional pupil could deliver such a stringent lesson in Arimaa 
fundamentals.

Congratulations to Mathew Brown, the 6th humanoid Arimaa World Champion, crowned 12 April 2015.
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