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Abstract

In the last two decades, thanks to dramatic advances in artificial intelligence, computers have

approached or reached world-champion levels in a wide variety of strategic games, including

Checkers, Backgammon, and Chess. Such games have provided fertile ground for developing

and testing new algorithms in adversarial search, machine learning, and game theory. Many

games, such as Go and Poker, continue to challenge and drive a great deal of research.

In this thesis, we focus on the game of Arimaa. Arimaa was invented in 2002 by the computer

engineer Omar Syed, with the goal of being both difficult for computers and fun and easy for

humans to play. So far, it has succeeded, and every year, human players have defeated the top

computer players in the annual “Arimaa Challenge” competition. With a branching factor of

16000 possible moves per turn and many deep strategies that require long-term foresight and

judgment, Arimaa provides a challenging new domain in which to test new algorithms and ideas.

The work presented here is the first major attempt to apply the tools of machine learning

to Arimaa, and makes two main contributions to the state-of-the-art in artificial intelligence for

this game. The first contribution is the development of a highly accurate expert move predictor.

Such a predictor can be used to prune moves from consideration, reducing the effective branching

factor and increasing the efficiency of search. The final system is capable of predicting almost 90

percent of expert moves within only the top 5 percent of its choices, and enables an improvement

of more than 100 Elo rating points. The second contribution is a comparison of several algorithms

in reinforcement learning for learning a function to evaluate the long-term value of a position.

Using these algorithms, it is possible to automatically learn an evaluation function that comes

close to the performance of a strong hand-coded function, and the evidence presented shows

that significant further improvement is possible. In total, the work presented here demonstrates

that machine learning can be successful in Arimaa and lays a foundation for future innovation

and research.
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Chapter 1

Introduction

Arimaa is a game that was invented in 2002 by Omar Syed, a computer engineer. According to

Syed, the original motivation for designing Arimaa came from the defeat of the world champion

Chess player, Gary Kasparov, in 1997 by IBM’s Deep Blue [31]. Syed wanted to see if it was

possible to design a game that could also be played using a Chess set that would be as fun

and interesting for human players, and yet be more difficult for computers. The result was a

fascinating new board game called Arimaa. By designing Arimaa, Syed hoped to encourage new

interest and research in artificial intelligence for strategic games [31].

To this end, every year an event known as the “Arimaa Challenge” is held, in which the

current best Arimaa program, running on common desktop hardware, plays a series of matches

against three different players chosen that year to “defend” the Challenge. Since the beginning

of the Challenge in 2004, human players have soundly defeated the best programs in every

match, with the exception of the most recent Challenge in 2010, where for the first time the top

program defeated one of the defending players, Patrick Dudek, in a match with a score of 2-1

[28].

It appears there is still some distance to go to develop a computer program that can stand

against the best human players. This is not due to a lack of effort either, as the online Arimaa

community is fairly programmer-dense. Yet currently on the server at Arimaa.com, the best

computer programs appear to be around 300 Elo points weaker than the best players.1And

although the programs are steadily improving, due to the newness of the game, the population

of human players is still growing and improving as well. It is not entirely clear how long human

dominance in Arimaa will last, but for now, Arimaa joins the increasingly small group of abstract

strategy games that resist strong computer play.

However, it is also true that many approaches have not been tried yet. As far as we know,

1The Elo rating system is a common way to compare the relative skill levels of players in two player games
[11]. 300 Elo corresponds to a winning chance of around 85% under the Elo model.

1
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nobody has yet made a major effort to apply the wide range of tools in machine learning to this

difficult game. Therefore in this thesis, we investigate several machine-learning algorithms for

ranking moves and evaluating positions in Arimaa. Our goal is to take the first step in exploring

and applying these techniques, which we believe have great potential for raising the level of

computer play.

In the remainder of this chapter, we give an overview of the problem and our contribution. We

begin by explaining the rules of Arimaa in Section 1.1. In Section 1.2, we discuss the properties

that make Arimaa challenging. In the context of these properties, we describe in Section 1.3

our approach and contribution to the field. Finally, in Section 1.4, we survey the techniques

currently being used by top programs and the alternatives that have been tried so far.

In Chapter 2, we attack the problem of heuristic move ordering in Arimaa. We apply an

innovative method developed by Rémi Coulom [6] and later used also by Harrison [12] to predict

expert moves in Computer Go, and we achieve similar success with it in Arimaa. Our resulting

function is capable of high-quality move ordering and is good enough to be used for direct

pruning during a tree search. Indeed, we were able to use it to great success in our own Arimaa

program, Sharp, and as a result of this and other improvements, Sharp recently won the 2011

Arimaa Computer Championship [30].

In Chapter 3, we turn to the problem of learning a strong evaluation function for Arimaa. We

present a simple framework for evaluating board positions using weighted linear combinations

of features, and within that framework, we compare four different algorithms for learning the

appropriate feature weights. While none of the algorithms is quite able to achieve the same

level of performance as the hand-coded evaluation function we currently use in our Arimaa-

playing program, our best result comes close, and we believe that with some improvements to

the algorithms and the learning procedure, it should be possible to match or surpass it.

1.1 Rules of Arimaa

Arimaa is a deterministic two-player abstract strategy game played on an 8 x 8 board. The rows

and columns on the board are labeled 1. . .8 and a. . .h, respectively, as shown in Figure 1.1. The

two players are named Gold and Silver.

1.1.1 Setup

Prior to normal play, Arimaa begins with a setup phase, where both players place their pieces on

an initially empty board. The players each begin with sixteen pieces of their color: 1 Elephant,
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1 Camel, 2 Horses, 2 Dogs, 2 Cats, and 8 Rabbits.

Both players may place their pieces in any desired arrangement within the two rows closest

to their side of the board. Gold places all gold pieces first, then Silver places all silver pieces.

Figure 1.1: Example game position, just after the setup phase.

1.1.2 Play

Following the setup phase, play begins and the players alternately take turns, beginning with

Gold.

Movement

During a player’s turn, that player may make up to four steps. A step consists of selecting a

piece of one’s color and moving it to an empty adjacent square. Adjacent squares include only

the squares immediately left, right, forward, or backward. All pieces move the same way, with

one exception: rabbits may not move backward.

Players may also use steps to push or pull their opponent’s pieces by using their own pieces,

as shown in Figure 1.2. A push consists of displacing an opposing piece to any adjacent empty

square, followed by moving a friendly piece into the square previously occupied the opposing

piece. A pull consists of moving a friendly piece into any adjacent empty square, followed by

moving an opposing piece into the square just vacated from any square adjacent to the vacated
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Figure 1.2: A silver horse steps down, pulling a gold rabbit. A gold elephant pushes a silver
camel to the right.

square. In each case, if there are no adjacent empty squares, then pushing or pulling is not

possible. 2

Moreover, pieces are ordered by strength, and pieces may only push or pull pieces that are

strictly weaker than they are. From strongest to weakest, the order of strength is elephant,

camel, horse, dog, cat, rabbit.

Pushes and pulls count as two steps, since they involve moving both one’s own piece and

an opponent’s piece one step each. Pushing and pulling simultaneously with the same piece is

forbidden, but otherwise pushes and pulls can be made in any desired combination along with

regular steps, up to a limit of four steps per turn.

Capture

The squares c3, c6, f3, f6, are trap squares. Whenever a piece is on a trap square but is not

guarded by a player, it is captured and removed from the board. A piece or square is guarded

or defended when there is a friendly adjacent piece, or defender.

The rule of capture is enforced continuously. In particular, it is enforced between steps within

the same turn, rather than just at the beginning or end of a turn. See Figure 1.3 for examples.

2Note also that when pushing and pulling, the two pieces do not have move in the same direction. Any adjacent
empty square is legal.
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Figure 1.3: Examples of capturing and freezing.
Upper-left corner : If the gold elephant pushes the silver dog up or left, it captures the silver rabbit on

the trap at c6 because the dog was the only silver defender of that trap.
Upper-right corner : The silver horse on the f6 trap can capture the gold rabbit by stepping left or right

while pulling the gold rabbit north onto the trap.
Lower-left corner : The rabbit on a2 cannot move because it is frozen by the adjacent gold camel.
Lower-right corner : The g2 rabbit is not frozen by the gold dog because it is guarded by the silver cat.

Freezing

If a piece is adjacent to a stronger opposing piece and is not guarded, then it is frozen and

cannot move. That is, it cannot step, push, or pull, until the stronger opposing piece moves

away or is pushed or pulled away, or until a friendly piece moves adjacent. See Figure 1.3 for

examples.

Winning

A player scores a goal and wins the game when one of that player’s rabbits ends the turn on

the opponent’s back row, on the opposite side of the board. Alternatively, a player can win by

immobilization if the opponent is unable to make any legal move on their turn, or by elimination

if the all of the opponent’s rabbits are captured.
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Repetition

Players must change the board position on their turn. This means they must make at least one

step, and may not make a sequence of steps that leaves the board unchanged. Additionally,

players may not end their turn making a move that causes a third-time repetition, where the

same resulting board position with the same player to play next has occurred twice before in

the game.

1.1.3 An Example Position

Figure 1.4: Example game position, Gold to play.

In Figure 1.4, we show another example to further illustrate the game rules.

Currently, it is Gold’s turn, and Silver is threatening to capture the horse at g5. If Gold

does not do anything about it, then on the next turn, Silver can move his camel from g4 to g5,

pushing the gold horse to g6, and then move his camel from g5 to g6, pushing the gold horse

into into the f6 trap. Since there are no other gold pieces guarding the f6 trap, the gold horse

would be captured. In total, this would also use all four steps of Silver’s turn.

Gold has a capture threat of his own: the gold camel on d4 can capture the silver horse on

c4 in by pushing it into the c3 trap. However, the camel is not immediately able to do this,

because it is frozen by the silver elephant on d5. Gold needs to spend one step first to advance

a rabbit from d2 to d3, guarding the camel and thereby unfreezing it and allowing it then to

push the horse. This accomplishes a capture in three steps.
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A good move for Gold might be to capture the silver horse in this way, and then use the

fourth step of his turn to move the gold elephant from d6 to e6. This would prevent Silver from

capturing the g5 horse next turn, because the f6 trap would now have a gold defender, namely

the elephant now on e6. In standard Arimaa move notation, Gold’s move would be Rd2n hc4s

hc3x Md4w Ed6e.3

1.2 Why Is Arimaa Challenging?

Playing games has long been a topic of interest to computer AI research, and in the past

few decades, substantial progress has been made. Many games have been solved with explicit

optimal strategies found, including Checkers [26] and Go-moku [1]. Other games, such as Chess,

Backgammon, and Reversi, have not been solved, but top programs have surpassed world-

champion human players [17, 32, 5]. In still more games, such as Shogi and heads-up limit

Poker, computers are reaching or rapidly approaching champion-level play [21, 16]. Only a

small number of classic games continue to resist expert-level computer play, including Go, many

other variants of Poker, and Bridge [22, 23, 3].

As a two-player adversarial game, Arimaa shares many properties with these previous games.

In particular, Arimaa is:

• Finite - Players have only a finite number of possible moves each turn. And since there are

a finite number of possible configurations of the 8x8 board, the rule prohibiting three-fold

repetition guarantees that eventually, any game must terminate.4

• Sequential - Players make moves alternately, rather than simultaneously.

• Perfect Information - Both players observe the complete game state, that is, the move

history, current board position, and the current player to move.

• Deterministic - Any move in a given state uniquely determines the subsequent state.

• Zero-Sum - Any winning outcome for one player is equally a losing outcome for the other.

Both players’ interests are exactly opposed.

Together, these properties make Arimaa trivial from a game-theoretic perspective. A stan-

dard minimax argument proves that one player must have a deterministic winning strategy, since

there are no draws. However, this by no means indicates that Arimaa is easy to play well. It

may easily be infeasible to find the optimal strategy because the number of states in the game

3See [29] for a description of the notation used to record positions and moves.



CHAPTER 1. INTRODUCTION 8

might be extremely large. Therefore, we consider the state-space and game-tree complexity of

Arimaa next.

1.2.1 State-Space Complexity

The state-space complexity of a game is defined as the number of game states that can be

reached through legal play.5

The state-space complexity of Arimaa is approximately 1043 [8]. Since Arimaa can be played

using a standard Chess set, it is not surprising that this is comparable to that of Chess, which

has been estimated to be around 1047 [34]. It is slightly less than in Chess because there is no

possibility for piece promotion in Arimaa.

A state-space complexity of 1043 is actually surprisingly small in that most popular games

with state-space complexity up to this size have seen at least world-class computer play, including

Chess itself. Those that continue to be challenging tend to have much larger state spaces, most

notably Go, with a state space complexity of 10172 [1]. Therefore, we turn to the game-tree

complexity next for an explanation of Arimaa’s difficulty.

1.2.2 Game-Tree Complexity

The game-tree complexity of a game is defined to be the number of nodes in shallowest full-width

game tree that proves the value of the initial position. For most popular games, this is infeasible

to compute, so it is very roughly approximated by taking the average branching factor to the

power of the length of the average game in practice.

In Arimaa, the per-turn branching factor is extremely large, due to the combinatorial pos-

sibilities produced by having four steps per turn. Given a board position in Arimaa, we define

the number of legal moves for a player to be all legal combinations of up to four steps by that

player (possibly including pushes and pulls), except that we identify moves as the same if they

produce the same resulting board position.

To estimate the average branching factor and average length of a game, we computed the

4This is not actually a useful practical bound, since the number of configurations is huge. One can even
construct positions that force games of ridiculous length, ending only due to prohibition of repetition. But in
practice, Arimaa games do not seem to exhibit this problem! Despite the lack of a “fifty move rule” as in Chess,
serious problems of repetition have occurred in almost none of the thousands of games played by people since
Arimaa was invented.

5Depending on one’s definitions, the full game state might include not just the board position and the side
to move, but also the move history, because differences in the move history could affect what moves are legal
later due to prohibition of third-time repetitions. Usually, when computing the state-space complexity of a board
game, we ignore the move history.
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average of both over the collection of all rated games played on the server at Arimaa.com [28]

between January 2005 and December 2010 between players with a rating of at least 1800, ending

in goal, elimination, or immobilization (and not by time or resignation). This was a total of

14115 games.

On average there were about 16064 distinct legal moves per turn, and the average game length

was about 92 turns, or 41 complete turn alternations. This is in reasonably close agreement

with earlier studies on the branching factor of Arimaa [13]. We note that this disagrees with

the much larger branching factor of 276386 computed by Christ-Jan Cox in [8]. This is because

Cox considers different sequences of steps that lead to the same board position to be distinct

moves. In general, many of the possible permutations of the steps in a given move will be legal

and will produce the same outcome, giving a substantially higher number if counted separately.

Since each player may arrange their pieces in the two rows on their side of the board in any

desired fashion during the setup phase, we multiply by the number of possible setups for each

player when computing the game-tree complexity. There are a total of 64864800 possible setups

for each player, although we may reduce the number by a factor of 2 for the first player due to

symmetry. This gives a game tree complexity of approximately:

(648648002/2) ∗ 1606492 ≈ 1.8 ∗ 10402

The enormous branching factor of about 16000 and the game-tree complexity of about 10402

give a reason for Arimaa’s computational difficulty, for they are substantially larger than in most

other popular games. For instance, the average branching factor and game-tree complexity in

chess have been estimated to be around 35 and 10123, respectively [1]. In fact, the values for

Arimaa are most comparable to those for Go, which has a branching factor of around 250 and

a game-tree complexity of around 10360 [1]. While the branching factor of Go is smaller than

Arimaa, Go games tend to last much longer, giving a game-tree complexity nearly as large.

These properties are summarized in Table 1.1.

Game State Space Branching Factor Avg. Length Game-Tree Complexity

Chess 1047 35 80 10123

Go 10172 250 150 10360

Arimaa 1043 16064 92 10402

Table 1.1: Game complexities for Chess, Go, and Arimaa
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1.2.3 The Branching Factor in Practice

The large branching factor in Arimaa is a serious impediment to game-tree search. Indeed, under

standard tournament time controls of 1-2 minutes per turn, current programs are incapable of

searching typical positions to deeper than 3 turns at full width. That is, any branch of the search

ends after player 1 makes a move, then player 2 responds, then player 1 responds. Without

special extensions for captures and other critical moves, this is barely enough to see some of the

common tactics in the game.

Although human players are also strongly affected by the branching factor, they are able to

compensate by recognizing good patterns of piece movements. Moreover, human players are

much more capable of decomposing the problem by identifying the most important subgoals.

The top human players are so effective at identifying the best moves that they are able to

consistently play well even when considering only a bare handful of moves each turn (even as

few as 2-3), out of the tens of thousands possible. As a result, the large branching factor in

Arimaa favors humans over computers.

1.2.4 Strategic Properties

In addition to a huge branching factor, empirically, Arimaa also exhibits some specific strategic

properties that appear to benefit human players over computer players, compared to other

Chess-like games.

Most notably, capturing pieces and winning material is somewhat more difficult in Arimaa

than in Chess. In Arimaa, a piece on one of the four trap squares is only captured when there

are no friendly adjacent pieces, or defenders. This is a moderately stringent condition, since the

opponent can often just add more defenders or just retreat the threatened piece away from the

trap. Moreover, the opponent can make a trap safe simply by placing his elephant adjacent to

it. Since no piece is stronger than the elephant, it cannot be pushed or pulled away, so no piece

can be captured in that trap until the elephant leaves on its own. Therefore, it is necessary

to make multiple threats at the same time, which usually requires first that a strong positional

advantage to be obtained over many turns. This increases the importance of long-term strategy

over short-term tactics.

Additionally, since pieces of equal strength cannot push or pull one another, they can deadlock

in local fights. Such deadlocks frequently make it necessary to shift the global distribution of

one’s pieces to make progress, which again requires significant long-term planning and judgment.

Altogether, this benefits human players over computers, since humans are often better at

making plans over long time horizons in large spaces and learning to evaluate uncertain tradeoffs.
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And while Arimaa positions can easily be highly complicated and combinatorial, overall the

greater difficulty of capture and lessened importance of short-term combinations make it slightly

easier for experienced human players to avoid tactical mistakes.

It is worth noting cases where these observations fail in Arimaa, such as in many endgames.

Once numerous pieces have been exchanged and the board opens up, Arimaa play usually

becomes extremely wild and sharp due to multiple threats to score goal on either side and a

relative lack of pieces with which to defend traps. In fact, this is one area of the game where

current Arimaa programs frequently outperform the top human players, unlike the midgame

and opening.

1.2.5 Conclusion

Altogether, Arimaa does appear to be a challenging domain. The massive branching factor and

the long time-period over which moves exert their strategic effects make it difficult to design a

strong computer agent. Nonetheless, progress is still being made. Especially in the last several

years, the top computer programs have been improving significantly, with a gain of a couple

hundred rating points in total on the server at Arimaa.com [28]. While top human players

continue to be rated another several hundred rating points higher and are still improving, it is

our belief that steady continued innovations will be sufficient to bridge the gap in the next one

or two decades. We believe that such innovations will include the types of learning algorithms

described in this thesis, as well as incremental improvements in existing algorithms for evaluation

and search.

1.3 Our Contribution

The two most significant challenges facing strong computer play in Arimaa are the massive

branching factor and the difficulty of accurate positional evaluation. We are the first to make

a major effort to apply the tools of machine learning to solve these problems, and our primary

contribution is an investigation and comparison of a variety of algorithms for doing so. Our goal

is to show how learning can be highly effective in Arimaa and to lay the groundwork for future

innovation and research.

In Chapter 2, we describe our investigation into the problem of learning a good move ordering

function for Arimaa. With tens of thousands of legal moves per position, any current method of

search will be rapidly overwhelmed by the possibilities, making it important to find better ways

to order, select, and prune moves. We apply an innovative method first used by Rémi Coulom [6]

in computer Go for learning to predict expert moves in games. Our resulting function is capable
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of ordering the legal moves in a position in Arimaa well enough such that almost 90 percent of

the time, the actual move played by the expert player in that position is within the top 5 percent

of the ordering. We then demonstrate that our ordering function is also effective at combating

the branching factor in practice by using it to prune moves in our Arimaa program. Even at

levels of pruning as extreme as 95 percent, the strength of our program does not decline—indeed,

it increases by over 100 Elo,6and using this function for pruning, our program recently won the

2011 Arimaa Computer Championship [30]. In this way, we demonstrate how a high-quality

move ordering can be learned in Arimaa and then directly applied to increase the effectiveness

of search.

In Chapter 3, we attack the challenge of accurate positional evaluation in Arimaa by apply-

ing and comparing four different algorithms for learning evaluation functions. These algorithms

include the well-known TD(λ) algorithm and a variant of it developed by Baxter, Tridgell, and

Weaver [2], as well as two algorithms recently developed in 2009 by Veness, Silver, Uther, and

Blair [35] that learn directly using the results of a minimax or alpha-beta search. We show that

beginning only from material weights, it is possible to automatically learn an evaluation function

that comes fairly close to the performance of the hand-coded evaluation we use in our Arimaa

program, Sharp. While we unable to match the performance of Sharp, our best learned agent

comes close, winning 74 out of 200 games when searching to an equal depth. Moreover, we give

evidence that substantial improvements are possible, potentially with only minor changes and

improvements to our existing methods.

Overall, our contribution is one that opens several new avenues for research in Arimaa. Our

investigations push forward on the state-of-the-art in this new game and lay groundwork for the

development of new algorithms and techniques in the future. We believe that techniques like the

ones investigated here will play a major role in ultimate triumph of computer play in Arimaa.

More broadly, we believe Arimaa has the potential to serve as a testbed for the development of

new game-playing and learning algorithms that perform well in the presence of a high branching

factor. As a tactical game in which deep search is almost impossible, and yet one in which

long-term evaluation is critical, Arimaa provides a unique and challenging domain. There is

substantial room for improvement on our results, and such improvements may have the potential

to uncover new ideas in search and evaluation.

6Under the Elo rating model [11], 100 Elo corresponds to approximately to a winning chance of around 64%,
and while not large, is a substantial gain.
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1.4 Current Arimaa Programs

We give a survey of a few of the current techniques used by top computer Arimaa programs, as

well as some of the alternatives that have been tried.

Alpha-beta Search

Despite the difficulties with the large branching factor, all of the current best Arimaa programs

use iterative-deepening depth-limited alpha-beta search at their core, although they incorporate

varying degrees of additional pruning and other search enhancements [36, 9, 8]. Overall, this

makes them very similar in structure to Chess programs.

Briefly, in alpha-beta search, one searches the game tree in a depth-first manner and computes

the minimax value of each node, while also tracking lower (alpha) and upper (beta) bounds on

the values of subtrees and pruning whenever a subtree provably cannot affect the minimax value

of the root node. Since it is impossible to search the entire game tree, one imposes a depth

limit, where one terminates the recursion and applies a heuristic evaluation function to estimate

the minimax value of the position. Additionally by iterative-deepening, where one iteratively

searches with an increasing depth limit until some time limit is exceeded, one can also search

for a specified amount of time rather than to a fixed depth. To gain better alpha-beta pruning,

a heuristic move-ordering function is applied to sort the moves at each node in order of likely

quality [24].

Evaluation functions for Arimaa can be very complex. Generally, they are based on material

advantage (which player has more/stronger pieces), but take into account a wide variety of

positional features, such as control of traps, advancement of pieces, goal threats, and various

identified strategic configurations in Arimaa known as blockades, hostages, and frames (see

Appendix B).

Step-based Search

In Arimaa, due to the fact that multiple steps occur in a turn, there is a nontrivial choice of

how to perform a search. One can view Arimaa in a turn-based fashion, as we have so far, where

there are thousands of legal moves per turn composed of different combinations of steps. But

one can also view Arimaa in a step-based fashion, where there are only twenty to forty legal

“moves” per turn, namely the individual steps, pushes, and pulls, and where the turn switches

only every four “moves” of the game.
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Although these two views are equivalent from a game-theoretic perspective, they have prac-

tical differences for search. For instance, it can be faster in a search to generate and handle lists

of twenty to thirty moves in a step-based search, rather than lists of thousands of moves. On

the other hand, heuristic move ordering can sometimes be less effective in a step-based search.

This is because even when a move is good, making only part of the steps of the move or making

different steps at the end of the move could be very bad, and a step-based recursion forces one

to search moves together that share their initial steps.

Most strong Arimaa programs use some variant of the step-based search [36, 9]. Empirically,

the speedup afforded by step-based search seems to outweigh the disadvantages in many cases.

Moreover, it can enable more effective iterative deepening. For instance, if there is not enough

time to search 3 turns (12 steps) deep, but there is excess time after searching 2 turns (8 steps)

deep, it is often possible to do an intermediate search 9 or 10 steps deep, gaining a better

evaluation than otherwise possible.

Hash Tables

In Arimaa, like in many games, many different sequences of moves can lead to the same position.

In Arimaa, this even occurs with different permutations of steps within a single turn. By caching

results in a hash table to avoid multiple searches of these repeated positions, one can achieve

dramatic improvements in speed. Other data can also be cached such as data about best moves

in each subtree, which can be used to dynamically improve the move ordering [19].

Quiescence Search

Depth-limited alpha-beta search frequently suffers from the horizon effect, where threats beyond

the depth limit are ignored by the search, leading to very poor results. This frequently manifests

in Arimaa when a program is faced with the inevitable capture of a strong piece, such as a horse.

It will often respond by placing a weak piece as a defender next to the relevant trap for the

opponent to capture for free, simply because that delays the loss of the horse one turn beyond

the depth limit where the search can see it. In this way, the horizon effect can cause a program

to meaninglessly sacrifice pieces.

Quiescence search attempts to mitigate this problem by extending the search beyond the

depth limit when it appears likely that a position will be misevaluated [19]. For instance, if

pieces remain capturable when the depth limit is reached, a quiescence search might extend the

search to include additional capturing or defending moves for that piece, so that the evaluation

function can return a more accurate result.
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Tree-Based Capture and Goal Detection

In Arimaa, due to the combinatorial possibilities of having four steps per turn, it is nontrivial

even to determine whether a piece can be captured or whether a rabbit can reach goal and

win the game on the current turn. Recursive search is costly and undesirable. Therefore, most

strong Arimaa programs use a decision tree generated by backwards induction to answer such

questions. Such decision trees can be applied very quickly and can allow certain tactics to be

discovered a full four steps earlier in the search [9].

1.4.1 Other Approaches

Various approaches other than alpha-beta search have been tried for Arimaa, although generally

with less success.

Monte-Carlo Tree Search

Recently, Kozelek [18] and Miller [20] both independently attempted to apply Monte-Carlo tree

search (MCTS), a recent search paradigm that has resulted in major breakthroughs in computer

Go [10]. In Monte-Carlo tree search, a game tree is expanded in memory by repeated playouts

from the root node. In each playout, moves are chosen at each node according to a tree policy

that favors moves that have previously performed the best (exploitation), but chooses other

moves at least some of the time (exploration). When a playout reaches the end of the tree, it

is played pseudorandomly until a terminal position is reached and the result, such as a win or

loss, is used to update the statistics of the nodes involved. High-performing leaves of the tree

are expanded periodically, so that the tree grows asymmetrically with strong bias towards the

best moves.

Unfortunately, random playout turns out to be a poor way to evaluate positions in Arimaa,

even to the point of valuing an extra rabbit more than the elephant, because the extra rabbit

better improves the chances of randomly reaching the goal [18]! Because of this, a straightforward

implementation of MCTS is barely better than uniform random play [20]. Kozelek attempted

to solve this by using only a short random playout followed by a deterministic, traditional

evaluation function, but even so, the resulting agent was relatively weak [18].

Our own observation is that Arimaa in general seems poorly suited to random playout.

There are a large number of moves in Arimaa that damage one’s own position greatly, such as

sacrificing one’s own pieces in traps or opening paths for opposing rabbits to reach goal. These

moves add a lot of noise and there is enough variety that it is extremely challenging to classify
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and prune them. Moreover, it is frequently the case that maintaining one’s position requires a

piece not to move. A simple example is that an elephant may not want to move because it is

guarding a trap. This means that Arimaa positions are somewhat “unstable” in that random

movement will rapidly destroy the strategic features of the position. Because of this, we believe

that MCTS-based methods are unlikely to succeed.

Planning and Selective Search

In another alternative approach, Trippen [33] investigated a pattern-matching and plan-based

method for performing extremely selective search. Rather than doing a traditional full-width

search, the resulting playing algorithm examines only a small handful of moves (as few as 5!) in

each position, which are generated according to positional analysis that suggests possible long-

term plans. As proof of concept, Trippen demonstrated a simple plan based around a certain

type of long-term threat in the opening that is capable of defeating several weaker Arimaa

programs.

However, a drawback of the system is that it requires plans to be manually specified and

implemented. Moreover, the limited way in which the planning system was tested makes it

difficult to evaluate its potential. And given that many midgame and endgame positions in

Arimaa are intensely combinatorial and do seem to require broad tactical search, it is probable

that this type of system could only be used as a component of a more general playing algorithm.

1.4.2 Conclusion

Unfortunately, barring a major breakthrough, we believe that the alpha-beta will continue to

be the most effective general method of search in Arimaa. While the high branching factor

is problematic for alpha-beta search, it is a similar problem for most other search algorithms.

Moreover, although obtaining an evaluation function capable of accurate long-term evaluation

is difficult, the current poor performance of methods involving playout greatly limits the alter-

natives. Yet, within the alpha-beta search framework, there still remain many possibilities for

innovation and improvement, such those described in this thesis.



Chapter 2

Move Prediction and Ordering in Ari-

maa

In this chapter, we attack the problem of the immense branching factor in Arimaa by investi-

gating ways of learning a good move ordering. To do this, we draw from the very closely related

problem of expert move prediction.

In Section 2.1, we motivate and define the problem. In Section 2.2, we present a simple

feature-based learning approach to solve this problem. Following that, in Section 2.3, we present

two algorithms for learning to predict expert moves based on these features, the first using a

naive Bayesian model, and the second using a generalized Bradley-Terry model [6]. In Section

2.4, we describe the actual features used. Finally, in Section 2.5, we present our training method

and experimental results.

2.1 The Problem of Move Ordering

It is well-known that in alpha-beta search, the order that moves are searched can drastically

affect the efficiency of the search. In particular, if at each node the optimal move is searched

first, then the minimax value of a game tree can be computed in O(bd/2) time, where b is the

branching factor and d is the depth of the tree, while if moves are searched in order from worst-

to-best, alpha-beta search degenerates down to full-width minimax search, running in time O(bd)

[24].

With a good move ordering heuristic, it may even be possible to prune beyond alpha-beta

by discarding moves that come late in the ordering. If the ordering heuristic is good enough,

these moves will very likely be worse than the earlier moves in the ordering and therefore will

not affect the minimax value. In this case, the increased search depth resulting from the time

17
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saved by discarding the moves can more than compensate for the occasional errors introduced.

Move ordering is useful in other search paradigms as well, such as the more recent family of

Monte-Carlo tree search (MCTS) algorithms. Ordering heuristics have been used successfully

in computer Go for progressive widening of the MCTS tree, as well as for biasing moves in the

random component of the playout to enable more accurate estimation of the value of positions

[22].

How might we learn a good move ordering? Informally, given a board position and a set of

legal moves, the task is to find an ordering of the moves that maximizes the likelihood that the

best move is near the front of the ordering.

More formally, consider a finite two player deterministic zero-sum game.

• Let S be the state space of the game.

• Let M be the set of all possible moves that could be made at any point in the game.

• Let M(s) ⊂M be the set of legal moves in state s ∈ S.

• Let m∗(s) ∈M(s) be the optimal move in state s ∈ S.1

• Define an ordering function to be a function O : S ×M → R.

• Given an ordering function O, for any state s ∈ S, define the induced ordering >O,s on

the legal moves M(s) by m >O,s m
′ iff O(s,m) > O(s,m′).

Typically we are not interested in the particular values of O so much as we are interested in the

relative ordering of values, as given by the induced ordering.

The task is to learn the best possible ordering function according to some evaluation metric.

In general, we want to rank the optimal move as highly as possible, although the specific metric

is open to choice. For instance, we might be interested in the frequency that the ordering ranks

the optimal move first:

1

|S|
∑
s∈S

χ (∀m ∈M(s) s.t m 6= m∗(s), m∗(s) >O,s m)

Or we might be interested in the average rank of the optimal move:

1

|S|
∑
s∈S
|{m ∈M(s) : m <O,s m

∗(s)}|

1For notational simplicity, we assume the optimal move is unique.
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We may also be interested in how the ordering ranks “good” moves that aren’t necessarily

optimal, so that in cases where the optimal move isn’t ranked first, the top few moves might

still be strong. And of course, in practice we may also not care too much how it performs on

arbitrary game states, so long as it performs well on all the states that could “reasonably” occur

in real games.

Unfortunately, it is infeasible to find the optimal move m∗(s) in general. However, we can

substitute the moves played by expert human players in recorded games, since game records are

readily available. In Arimaa, expert human play will probably be stronger than anything we can

achieve with a static learned heuristic, and therefore from our point of view, a fine replacement

for optimal.

This transforms the problem into one of expert move prediction. Rather than learning an

ordering function that tries to rank the optimal move highly, we instead learn an ordering

function that tries to rank the expert move highly. Equivalently, we are trying to learn a

function that given a game state, will attempt to predict the move that the expert will play and

order the legal moves by how likely they are to be the expert move.

By attacking this problem, we hope to obtain a good move ordering function that approxi-

mates the optimal ordering, which will then allow us to prune much more effectively within a

game-tree search.

2.2 Using Features to Generalize

Since the number of state-move pairs is very large, the space of possible ordering functions is

also enormous, and it would be infeasible to learn such a function without some sort of inductive

bias or ability to generalize. After the first few moves in a game of Arimaa, it is likely that every

board position thereafter will be unique, having never occurred in any other game yet played,

so the ability to generalize between positions is essential.

However, a major challenge for generalization is that the space of game states is highly

discontinuous with respect to what moves are good and bad. For example, in Figure 2.1 we see

that in one position, a particular move by Gold captures Silver’s camel, making it a very good

move, whereas with a slight change in the position, the move no longer captures, and is in fact

relatively pointless. The tiny change in the position has caused a drastic shift in how good a

move is.

Therefore, rather than train on the state-move pairs themselves, we instead map them into a

feature space composed of various identified features that correlate more strongly with how good

a move is likely to be than the raw position or move, such as whether a move captures a piece, or
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Figure 2.1: On the left, Gold can capture Silver’s camel on c6 in four steps by moving his elephant from
e6 to d7 and then pulling the c7 cat to d7, removing the only silver defender of the trap. On the right,
Silver’s b7 dog has been moved a single space. Gold’s move no longer captures the camel, since the trap
has one more defender.

how many resulting defenders will be next to a given trap square. This allows us to distinguish

cases where superficially similar moves behave very differently, since the two moves can differ

greatly in the resulting feature space. Moreover, this lets us effectively generalize between

different positions by allowing us to learn trends that are exhibited across many positions, such

as the fact that capturing opposing pieces is generally good.

In our particular case, given a state s ∈ S, for each possible legal move m ∈ M(s), we

compute a binary feature vector v(s,m) ∈ {0, 1}n, where the value of any binary entry indicates

the presence or absence of a particular feature.

Then, given a training instance (s, w) where s is the game state and w indicates that out of

all the legal moves m1, ...,mj , mw was the one played by the expert, the input to the learning

algorithm is ((v1, ..., vj), w) where vk = v(s,mk). We take our ordering function O to be of the

form O(s,m) = h(v(s,m)) where h : {0, 1}n → R is an ordering function on feature vectors,

rather than state-move pairs.

Our task is now as follows: Given training instances (V1, w1), ..., (Vn, wn) where each Vj is a

list of feature vectors (vj1, ..., vjm), find a function h with induced ordering >h, such that given

any new list of feature vectors for moves in an Arimaa position, h orders or ranks the vector

corresponding to the expert move as highly as possible.



CHAPTER 2. MOVE PREDICTION AND ORDERING IN ARIMAA 21

2.3 Algorithms

We implemented and tested two learning algorithms for solving this task. We describe them in

the following sections.

2.3.1 Naive Bayes

As a baseline, we implemented a Naive Bayesian classifier, using a standard conditional indepen-

dence assumption to try to distinguish between expert and non-expert moves. Although Naive

Bayes is often an overly simplistic model, it is easy to implement and fast to train, and is known

in a variety of settings to give results that are surprisingly not too bad.

Consider the task of trying to learn a binary classification C : {0, 1}n → {0, 1}. Given a

feature vector v ∈ {0, 1}n with feature values f1(v) = a1, ..., fn(v) = an, the probability that

C(v) = 1 can be expanded using Bayes’s theorem:

P [C(v) = 1 | f1(v) = a1, ..., fn(v) = an]

=
P [C(v) = 1] P [f1(v) = a1, ..., fn(v) = an | C(v)=1]

P [f1(v) = a1, ..., fn(v) = an]

=
P [C(v) = 1] P [f1(v) = a1, ..., fn(v) = an | C(v)=1]∑1
c=0 P [C(v) = c] P [f1(v) = a1, ..., fn(v) = an | C(v) = c]

If we assume that all of the vj are conditionally independent given C(v), then this simplifies to:

P [C(v) = 1]
∏n
j=1 P [fj(v) = aj | C(v) = 1]∑1

c=0 P [C(v) = c]
∏n
j=1 P [fj(v) = aj | C(v) = c]

From here, all of the component probabilities can be estimated directly by counting their fre-

quency in the training data.

To apply this to our problem of expert move prediction, we classify C(v) = 1 if v is the feature

vector for an expert move and C(v) = 0 if not. For each training instance ((v1, ..., vj), w), we

provide the expert move vector vw as an input with C(vw) = 1, and for every other i 6= w, we

provide vi as an input with C(vi) = 0.

Note that since we are interested in a move ordering rather than the classification of any

particular move alone, we do not use the Naive Bayes classifier the typical way. Typically, one

receives a single vector v at a time, and returns the most probable class:

argmaxc P [C(v) = c | f1(v) = a1, ..., fn(v) = an]
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In our case, we instead order all the possible legal moves in a game state by the independent

probability that they are in the class of expert moves. Our ordering function h is:

h(v) = P [C(v) = 1 | f1(v) = a1, ..., fn(v) = an]

2.3.2 Bradley-Terry Model

Our other learning algorithm for Arimaa is based on a generalized Bradley-Terry model, a

simple model for associating the skill level of agents in a competition with the probability that

any particular agent will win the competition [15].

Such a model was first used in computer Go by Coulom [6] to predict expert move choices

using the innovative idea of treating them as outcomes of competitions between moves. Each

move, viewed as a team whose members are its features, competes to be the expert move. The

moves with the best features are the most likely to “win” the competition and be chosen by the

expert. By optimizing the model over a set of expert game records, we can learn how good or

bad each feature is in order to predict moves in future games.

Model

In a Bradley-Terry model [15], each agent i ∈ [1, ..., N ] in a series of competitions is assigned

a certain strength γi ∈ (0,∞). In any single competition, there is exactly one winner, and we

model the probability that an agent wins so that each agent wins with probability proportional to

its strength. For instance, in a pairwise competition between two agents i and j, the probability

that i wins is:

P [i wins] =
γi

γi + γj

In a generalized Bradley-Terry model, we consider competitions between teams of agents as well

as between multiple teams at once. Given a team T ⊂ [1, ..., N ], we define the strength of the

team by:

γ(T ) =
∏
i∈T

γi

Then, in a competition between teams T1, ..., Tn, the probability that Tj wins is:

P [Tj wins] =
γ(Tj)∑n
i=1 γ(Ti)

We apply this model to the problem of expert move prediction by considering each individual

feature vi to be an agent with a certain unknown strength γi. Each binary feature vector v is a
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team of its component features, with strength equal to the product of its features’ strengths:

γ(v) =
∏

i:fi(v)=1

γi

Each training instance ((v1, ..., vj), w) is modeled as the result of a team competition between

the binary feature vectors, where the feature vector vw corresponding to the expert move is the

winner of the competition. The training procedure consists of a standard maximum a posteriori

estimation, where we use Bayesian inference to find the most likely model parameters γ1, ..., γn

given the observed data.

To predict the expert move in a new game state, we simply order each legal move mi ∈M(s)

by the probability that its associated feature vector vi wins the competition:

h(vi) = P [vi wins] =
γ(vi)∑|M(s)|

i=1 γ(vi)

Since the normalizing factor in the denominator is the same for any feature vector for this state,

we can omit it. Therefore, our final ordering function is:

h(vi) = γ(vi)

Optimizing the Model

We use the same optimization procedure described by Coulom for computer Go [6].

Our goal is to find the model parameters that maximize the posterior probability given the

observed results. Formally, let γ ∈ (0,∞)n be a vector of all the model parameters γi and let R

be a collection of all the observed results R1, ..., Rn. Then, we wish to maximize P [γ |R], which

by Bayes Theorem is:

P [γ |R] =
P [R | γ]P [γ]

P [R]

The normalizing constant P [R] can be ignored for the purposes of maximization since it does

not depend on γ. Additionally, if we choose a prior P [γ] whose distribution over γ is of the form

P [R′ | γ] where R′ is a fixed set of virtual competition results, then we have:

P [R | γ]P [γ] = P [R | γ]P [R′ | γ] = P [R,R′ | γ]

and therefore we can simply focus on maximizing the likelihood P [R,R′ | γ].

A natural choice for R′ is to give each feature n wins and n losses against a virtual opponent

of strength γvirtual = 1 for some small n. This implicitly produces a prior that mildly biases
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each feature towards strength γj = 1, ensuring that features with very few observations do not

recieve overly extreme values.

We assume that all the results Rk ∈ R are independent of one another. This is not actually

true, since we are extracting a result from every state in each game, and features of many

legal moves will be very similar between successive states in a game. Moreover, human players

typically do not consider each situation in a game independently, but will rather cache and

update their evaluation of the board position based on their evaluations in previous turns.

However, independence is a fair assumption to impose, given that the game state itself should

still by far be the most important factor in the expert’s move choice. The effects of short runs

of correlations between positions from the same game should be washed out over a data set of

hundreds or thousands of games.

To perform the maximization of P [R,R′ | γ], we initialize all γi to the initial values 1.0,

and then perform successive iterations of updates. Each iteration, we sequentially update each

feature by the following update rule (see Appendix A for a detailed derivation):

γi ←
Wj∑N
j=1

Cij
Ej

Cij is the total strength of the other features on all teams that feature i is a member of, Ej is

the total strength of all participants (given the current value of γi), and Wj is the number of

times feature i is on the winning team. We continue iterating until convergence. In practice, on

the type of data generated for our expert move training, convergence is rapid and consistent,

requiring only a few tens of iterations.

Note that if we fix the values Ej , the denominator in the update rule has a natural interpre-

tation, namely the expected number of wins that would be scored by the teammates of feature

i without the help of feature i, over all the competitions. Thus, our update rule simply consists

of setting γi to be the ratio of the number of wins with feature i to the expected number of wins

without feature i.

2.4 Features Implemented

In the following section, we describe the actual features used by our learning algorithms. The

features were chosen according to expert knowledge about what types of properties of a move

might make it more or less good, as well as by examining the results of preliminary tests for

systematic mispredictions that suggested additional useful features to add.

All features describe the results of the full move of a given turn, as opposed to one of the
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four possible steps of a turn in Arimaa. All features are binary.

Symmetry

Since the rules are preserved by left-right symmetry and also by the symmetry of simultane-

ously swapping the two players and vertically reflecting the board, all features are normalized

accordingly by the player to move, and where relevant, mirroring locations on the board are

considered equivalent (giving only 32 locations, rather than 64).

Piece Type

In many of the following features, it is important to distinguish how strong a piece is. However,

the strength of a piece is only relative to other pieces. For instance, if both players have 1

elephant, 2 horses, and 2 rabbits, this is exactly the same as the case where both players have

1 elephant, 2 dogs, and 2 rabbits.

Therefore, we do not consider the absolute type of a piece such as “horse” or “dog”, but

rather we count the number of opposing pieces stronger than it, and whether or not it is a

rabbit (because rabbits cannot move backwards). The piece types we used are as follows:

Type 0: Non-rabbit, 0 opponent pieces stronger

Type 1: Non-rabbit, 1 opponent piece stronger

Type 2: Non-rabbit, 2 opponent pieces stronger

Type 3: Non-rabbit, 3-4 opponent pieces stronger

Type 4: Non-rabbit, 5-6 opponent pieces stronger

Type 5: Rabbit, 7-8 opponent pieces stronger

Type 6: Rabbit, 5-6 opponent pieces stronger

Type 7: Rabbit, 0-4 opponent pieces stronger

Position and Movement

Different pieces in Arimaa tend to work most effectively in certain key areas of the board,

such as squares adjacent to trap squares. However, the best location for different pieces varies

significantly with the type of piece. Moreover, the importance of pushing and pulling opponent

pieces depends strongly on its type and location. Therefore, we add the following features:

SRC(p,type,loc): Piece owned by player p (0-1) of type type (0-7) moved from location loc (0-31).

(512 features)

DEST(p,type,loc): Piece owned by player p (0-1) of type type (0-7) moved to location loc (0-32),

where location 32 indicates captured. (528 features)
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Trap Status

The number of defending pieces (0-4) next to each trap in Arimaa is critical in considering what

possible tactics are available. We also distinguish whether or not the elephant is next to the

trap or not, except in the case of four pieces next to a trap, since the presence of an elephant as

a defender is very important for considering how strongly that trap is held. This gives 8 possible

statuses for the defense of a trap.

TRAP STATUS(p,trap,status0,status1 ): Trap trap (0-3) from perspective of player p (0-3) changed

from status0 (0-7) to status1 (0-7). (512 features)

Capture Threats and Defense

Threatening and defending the capture of a piece plays a key role in many tactics.

THREATENS CAP(type,s,trap): Threatens capture of opposing piece of type type (0-7) in s (1-4)

steps , in trap trap (0-3). (128 features)

INVITES CAP MOVED(type,s,trap): Moves own piece of type type (0-7) so that it can be captured

by opponent in s (1-4) steps , in trap trap (0-3). (128 features)

INVITES CAP UNMOVED(type,s,trap): Own piece of type type (0-7) can now be captured by

opponent in s (1-4) steps, in trap trap (0-3), but it was not itself moved. (128 features)

PREVENTS CAP(type,loc): Removes the threat of capture from own piece of type type (0-7) at

location loc (0-31). (256 features)

The way in which one defends the capture of a piece is also important.

CAP DEF ELE(trap,s): Defends own piece otherwise capturable in s (1-4) steps in trap trap (0-3)

by using the elephant as a trap defender. (16 features)

CAP DEF OTHER(trap,s): Defends own piece otherwise capturable in s (1-4) steps in trap trap

(0-3) by using a non-elephant piece as a trap defender. (16 features)

CAP DEF RUNAWAY(trap,s): Defends own piece otherwise capturable in s (1-4) steps in trap

trap (0-3) by making the threatened piece run away. (16 features)

CAP DEF INTERFERE(trap,s): Defends own piece otherwise capturable in s (1-4) steps in trap

trap (0-3) by freezing or blocking the threatening piece. (16 features)

Goal Threats

Making and defending against threats to goal (which wins the game) is also very important.
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THREATENS GOAL(s): Threatens goal in s (0-4) steps. (5 features)

ALLOWS GOAL: Allows opponent to goal next turn. (1 feature)

Piece Advancement and Threats

Choosing when to advance pieces is important, given the balance of strength in that area. We

use a measure of “influence” in a region to determine this.

Influence is determined by a simple heuristic calculation. The square under each piece is

assigned a value in {75, 55, 50, 45, 40, 35, 30, 25, 15} according to the number of opposing pieces

stronger than that piece, using negative values for the opponent and zero for empty squares.

The values are then diffused four times, where for each adjacent square, a diffusion transfers

0.16 of the value of that square. The final value is scaled down into a range (0-8).

RABBIT ADVANCE(y,inf ): Moves own rabbit to row y (0-7) with the area around the goal

directly in front of the rabbit having influence inf (0-8). (72 features)

PIECE ADVANCE(type,inf ): Advances piece of type type (0-7) with the opponent’s nearest trap

on the opponent’s side having influence inf (0-8). (72 features)

PIECE RETREAT(type,inf ): Retreats piece of type type (0-7) with the opponent’s nearest trap

on the opponent’s side having influence inf (0-8). (72 features)

For the last two of the previous three classes of features, we average the influence of the oppo-

nent’s traps when the piece ends on either of the two central columns of the board. Additionally,

we do not consider movements just in the far or near side of the board to be advancements and

retreats—pieces must cross through one of the middle four rows.

We also consider movements of pieces relative to the nearest piece stronger than them. That

is, the nearest dominating piece.

ESCAPE DOMINATOR(type,inf,dist): Piece of type type (0-7) moved away from nearest dom-

inating piece, with source influence inf (0-8), ending at manhattan distance dist (1-4) from the

dominating piece. (288 features)

APPROACH DOMINATOR(type,inf,dist): Piece of type type (0-7) moved closer to nearest dom-

inating piece, with source influence inf (0-8), ending at manhattan distance dist (1-4) from the

dominating piece. (288 features)

DOMINATES ADJ(type,inf ): Moves own dominating piece adjacent to opponent’s piece of type

y (0-7) with the opponent’s nearest trap on the opponent’s side having influence inf (0-8). (72

features)
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Stepping On Traps

Voluntarily stepping on a trap square can be dangerous when the trap has too few defenders.

However, it can also be good to place a piece on a trap square because it allows that piece in

the future to access any of the four surrounding squares for defending that trap, and a piece on

a trap is hard to push away.

We heuristically define a “safe” trap for a player as one that is guarded either by two defenders

of that player, or the elephant. Otherwise, the trap is “unsafe”.

UNSAFE STEP ON TRAP(trap,type): Piece of type type (0-7) stepped on unsafe trap trap (0-3).

(32 features)

SAFE STEP ON TRAP(trap,type): Piece of type type (0-7) stepped on safe trap trap (0-3). (32

features)

Freezing

Freezing the opponent’s pieces is beneficial for restricting their possible moves, while having

one’s own pieces frozen is detrimental.

FREEZE TYPE(p,type,f ): Piece owned by player p (0-1) of type type (0-7) had its frozen/unfrozen

status changed to f (0-1). (32 features)

FREEZE LOC(p,loc,f ): Piece owned by player p (0-1) at location loc (0-31) had its frozen/unfrozen

status changed to f (0-1). (128 features)

Blocking

A number of important tactics in Arimaa involve using pieces to block the opponent’s piece from

entering or leaving a certain square, such as a trap square, a square adjacent to a trap square,

or the goal line. Either a piece of greater or equal strength can be used, or a phalanx formation

composed of weaker pieces (see Appendix B for an illustration).

BLOCK TYPE(type,b,isphalanx ): The blocked/unblocked status of an opposing piece of type type

(0-7) in some adjacent square changed to b (0-1), and isphalanx (0-1) indicates whether a single

piece or a phalanx was used. (32 features)

BLOCK LOC(loc,dir,b,isphalanx ): The blocked/unblocked status of a piece at location loc (0-31)

in the direciton dir (0-2) changed to b (0-1), and isphalanx (0-1) indicates whether a single piece

or a phalanx was used. (96 features)
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Previous Moves

The location of the previous move and the move before the previous move are moderately

correlated with the position of the next move, so we can use these to aid our prediction.

For both the previous move and the move before the previous move, we compute a score

indicating how close in location the current move is. Letting s1, ..., s4 and t1, ..., t4 be the four

steps of two given moves, the closeness score of those moves is computed as:∑
i

∑
j

max(0, 4−M(s1, t1))

where M(s, t) is the manhattan distance between the square that step s moved from and the

square that step t moved from. This gives a value bounded in the range [0, 63], where higher

values indicate that more of the steps of the two different moves took place closer together. We

add the following features:

LAST CLOSENESS(c): The closeness score of the current move to the previous move is c (0-63).

(64 features)

LAST LAST CLOSENESS(c): The closeness score of the current move to the previous previous

move is c (0-63). (64 features)

Dependency Structure

Lastly, we include a very interesting feature first proposed and used by Zhong [36] in one of the

earliest Arimaa programs. This is the dependency structure of the different steps within a move.

Although one can make four independent steps in a turn, often some of the steps will depend on

others, and may not be arbitrarily permuted. For example, this occurs when moving the same

piece twice, or pushing or pulling, or using one piece to unfreeze another. It turns out that by

far the vast majority of moves played by expert players are not composed of four independent

steps, even though a plurality of the legal moves are, and in general, the number and type of

the dependencies is correlated with expert move choice.

For our features, we approximately count the number of independent components in the steps

in a move by considering one step to be dependent on another if their sources or their destinations

are adjacent, or if they both involve the adjacent squares of the same trap (because the trap

square mechanic can cause dependencies between steps that aren’t immediately adjacent).

Additionally, the number of steps in a move itself is a useful feature. Usually, it is bad to use

fewer than four steps, so we add features that distinguish this as well.
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MOVE STRUCTURE(s,c): A total of s (1-4) steps were made, with c (1-4) independent compo-

nents. (16 features)

2.5 Experimental Results

2.5.1 Data

We gathered all games played from January 2005 to March 2010 on the online server at Ari-

maa.com by human players and certain selected bots, with the restriction that both players had

a rating on the server of at least 1800. Note that we included sufficiently strong bots in our

testing data rather than only human players, because many moves made by strong bots are

still reasonably strong moves, and still well-beyond what we could hope to achieve with a static

heuristic.

Since the number of games involving bots was somewhat higher than the number of human-

versus-human games, (due to the relatively small human population online at any given time

and the continuous availability of a variety of bots), we added a mild bias towards human-played

games by randomly excluding each game with probability 0.3 for each bot player in the game.

This left a set of 4560 games. Approximately 10 percent of these games were randomly

selected to be used as a testing set and the remaining 90 percent were used as the training set.

This gave a training set of 4121 games and a testing set of 439 games, on which we trained and

tested both the Naive Bayes and Bradley-Terry predictors.

We attempted to do some filtering of the games for “bad moves” to try to reduce some of

the noise in the data. Arimaa players will sometimes make self-damaging moves, such as self-

capturing their pieces near the end of the game when they have no way to avoid losing in the

next few turns, as a way of indicating concession. Additionally, players occasionally self-capture

their own pieces at the beginning of the game to begin with fewer pieces, as a way of playing

a handicap game against a weaker opponent. We crudely attempted to filter these moves out

by excluding any sequence of consecutive self-capturing moves contiguous with the beginning

of the game, as well as any self-capturing move made in the last two turns of the game by the

player who lost.



CHAPTER 2. MOVE PREDICTION AND ORDERING IN ARIMAA 31

2.5.2 Implementation and Training

Naive Bayes

The Naive Bayesian classifier was trained with a straightforward single pass over the training

games, counting the number of observations of each feature among expert moves and the number

of observations among non-expert moves to estimate the conditional class probabilities.

Additionally, to handle features that never occurred in the training games, letting the back-

ground frequency of expert moves be p, we added fractional virtual observations of weight p of

the feature occurring and not occurring with an expert move, and fractional virtual observations

of weight (1− p) of the feature occurring and not occurring with a non-expert move.

Training took a little more than 14 hours, the vast majority of which was spent generating

the features for each move. The memory usage was negligible.

Bradley-Terry

The Bradley-Terry model was trained by repeatedly iterating over the feature data to perform

the necessary updates. A total of 20 iterations of updates were performed. This was plenty

to achieve convergence, as most features appeared to reach within a small range of their final

values after only 5 to 10 iterations.

We chose our prior to be an observation of 1 win and 1 loss for each feature against a virtual

opponent of strength γ = 1.

One major drawback of the training process is that we were forced to hold all the feature

data in memory. This is because the process for computing Ej and Cij in the update procedure

requires a pass over all of the data, iterating over each competition, team, and feature to compute

the appropriate sums of products of γs. Since these values change after every update, this

requires that the features for each move either be kept around or regenerated every update.

However, given that generating the features takes more than 12 hours and tens of thousands of

updates are required, it was not possible to regenerate them each update, so we were forced to

store them in memory.

Unfortunately, even with a sparse vector representation, this meant that memory limitations

made it impossible to store even a small fraction of the training set in memory. We estimate

that the memory required for storing the full training set would have been on the order of 1

terabyte, which was much more than we had available.

Therefore, we took the radical approach of discarding almost all of the non-expert moves
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in each position. In each position, we randomly permuted all the legal moves that weren’t

chosen by the expert, then randomly discarded all but 0.5 percent of them beyond the first

twenty.2Additionally, to further reduce the memory requirements, we also randomly discarded

all but one third of the training instances. However, these training instances were still chosen

from all 4121 games, to retain the diversity of game states and provide better independence

between training instances.

Of course, a scheme like this loses a substantial amount of information. However, one would

intuitively expect the correlations between features and expert moves to remain strong—features

that correlate positively with expert moves will continue to do so in the reduced data, and

features that correlate negatively with expert moves will do so by virtue of showing up more

frequently in remaining random moves than in the expert move. As such, one might plausibly

expect the Bradley-Terry model to still produce good feature weights, and this appears to be

empirically supported by our results. Moreover, in informal testing, this approach appeared to

give better results than the alternatives, such as discarding no data but only training on a few

thousand instances (the equivalent of only 20-40 games).

There may be other ways around the problem of memory, and we propose a few in Section

2.5.5 where we discuss possibilities for future work. However, here we did not pursue them.

Unlike memory, computation time was much less of an issue, especially after reducing the

data. On the reduced data, the training took around 70 minutes, 25 of which were spent com-

puting the features themselves. Training used about 1.5 gigabytes of memory. For comparison,

running Naive Bayes on the reduced data takes 30 to 35 minutes in total with almost no memory

usage.

2.5.3 Prediction Accuracy

For both algorithms, we used the ordering function learned by the algorithm to order the legal

moves in each position in our testing set of 439 games. For different values of X, we counted

the proportion of times the top X moves contained the expert move. For X = 1, this is the

proportion of times that the ordering actually ranked the expert’s move first. We also did the

same for X equal to a percentage of the legal moves in a position, rather than an absolute

number. Our results are summarized in Tables 2.1 and 2.2.

Both algorithms performed very well at predicting expert moves. More than 85 percent of the

time for Naive Bayes, and almost 95 percent of the time for Bradley Terry, the expert move was

within the top 10 percent of the ordering. A substantial fraction of the time, the expert move

2Keeping at least twenty moves ensures that we have a reasonable number of moves remaining in the rare case
that there are actually very few legal moves in a position.
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Top X Moves 1 2 5 10 50 100 500 1000

Naive Bayes 4.4 7.0 12.8 18.7 38.0 49.3 75.4 84.8

Bradley Terry 12.0 18.1 28.9 38.0 61.0 70.7 88.6 93.6

Table 2.1: Percentage of expert moves falling within the top X moves of the ordering, for different
values of X. Average branching factor was 16567.

Top X Percent 5% 10% 20% 40% 60% 80%

Naive Bayes 76.5 85.7 92.7 97.5 99.2 99.7

Bradley Terry 89.4 94.3 97.7 99.3 99.7 99.9

Table 2.2: Percentage of expert moves falling within the top X percent of moves of the ordering,
for different values of X.

was within the first 5 to 10 actual moves, and the Bradley-Terry predictor managed to predict

the exact move 12 percent of the time. This is surprising, considering the branching factor of

around 16000. These results indicate that our feature-based approach is highly effective, and

that our feature set contains many features that correlate well with expert move choices.

The Bradley-Terry predictor clearly outperformed Naive Bayes, despite being trained on only

about 1/600 of the data (because of the memory constraints). This is because even with much

less data, Bradley-Terry is able to adjust for correlations between different features that violate

the conditional independence assumption in Naive Bayes.

For instance, in the current feature set, there are strong correlations between features such

as altering the number of defenders at a trap and moving to a destination square adjacent to

a trap, or making a goal threat and advancing a rabbit forward. The Bradley-Terry predictor

is able to handle such correlations because the degree to which a choice of move reflects on the

strength of a feature of that move depends on the strengths of the other features of the same

move.

This is especially important for some good moves that include some very bad features. For

instance, to allow a rabbit to reach the goal and win the game, it is sometimes necessary to

sacrifice a piece by leaving it on the trap square while the rabbit, the only defending piece,

moves away. The Bradley-Terry predictor would score this move very well despite the negative

feature of the piece sacrifice. This is because such piece sacrifices often occur during goaling in

expert games, which causes the evaluation of reaching goal to be correspondingly higher in the

maximum likelihood estimate to “explain away” the fact that this type of move is frequently
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played.

It is interesting to note that the ordering function for both predictors is essentially the same,

a linear function, after an appropriate transformation. Both predictors can be written in a form

with only a single real parameter for each feature, where the ordering function is simply the sum

of the parameter values corresponding to the features that occur in a move. This is obvious for

Bradley-Terry when one takes the logarithm of the feature strengths γi, and becomes apparent

for Naive Bayes when one takes the logarithm of the “odds-likelihood” formulation of Bayes’s

Rule. The only difference is that the model backing the linear weights in the Bradley-Terry

predictor is more effective.

The only downside is that the Bradley-Terry predictor is significantly more costly to train on

the same amount of data, with the primary limiting resource being the memory needed to store

all of the feature vectors for all training instances. But even though we were forced to discard

vast amounts of data to reduce the memory usage enough to train the Bradley-Terry predictor,

it proved to be very good at learning to predict the expert moves anyways.

2.5.4 Testing in Play

We tested the Bradley-Terry move predictor in play in our computer Arimaa program, Sharp, to

evaluate its effectiveness as a move ordering function. We hypothesized that by using the learned

function to order moves at the root node of each search, we could increase the effectiveness of

alpha-beta pruning, thereby allowing the search to reach deeper given the same amount of

search time and increasing its strength. Moreover, with the high levels of prediction accuracy

we observed for expert moves, we hypothesized that we could in fact use it to prune moves

outright and speed up the search further without losing too many good moves, so we tested

various degrees of root-level pruning.

Briefly, Sharp is a standard alpha-beta searcher using most of the search enhancements de-

scribed earlier in Section 1.4, including a limited quiescence search and a hand-coded evaluation

function. Prior to our testing, Sharp performed no root-level ordering except for the simple

improvement in iterative deepening of searching the best move of the previous iteration first

during the next iteration. We also continued to do this during the testing of Bradley-Terry, but

aside from this, no other ordering or pruning was done at the root. For some additional details

about Sharp, see Section 3.4.2 in Chapter 3.

We played five versions of Sharp using various levels of ordering and pruning in a round-robin

tournament at a time control of 5 seconds per move, totaling 1600 games in all. One version did

not use the learned ordering at all, one version used it only to order but not prune at the root
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node of each alpha-beta search, and three other versions used it to prune all but 30, 10, and 5

percent of the legal moves at the root node. The tournament results are summarized in Table

2.3.

Base BTOrder BTPruneTo30 BTPruneTo10 BTPruneTo5

Base - 80-80 69-91 48-112 49-111

BTOrder 80-80 - 55-105 66-94 42-118

BTPruneTo30 91-69 105-55 - 76-84 70-90

BTPruneTo10 112-48 94-66 84-76 - 69-91

BTPruneTo5 111-49 118-42 90-70 91-69 -

Table 2.3: Pairwise results of tournament between versions of Sharp, playing using 5 seconds per
move, with 160 games played per pair. Each entry is of the form “x-y” where x is the number
of wins by the row player, and y is the number of wins by the column player. The Base version
did not use the learned ordering, BTOrder used it to order moves at the root but not prune,
and BTPruneToX used it to order moves and prune all but X% of moves after the first ten.

The results in Table 2.3 are a strong confirmation of our hypothesis that the learned ordering

function could be used effectively to prune moves. We see a progression where the versions using

increasing degrees of pruning generally won increasing numbers of games against versions that

pruned fewer moves, or that did not prune. Against the non-pruning base version of Sharp,

increasing the level of pruning from none to 95 percent raised the number of games won out of

160 from 80 up to 111 or 112. Moreover, in every direct comparison between a version that used

greater pruning with one that used fewer, the one that used greater pruning won the majority

of games.

However, the results from ordering alone ran contrary to our expectations. We hypothesized

that the learned ordering function would improve performance even without pruning, yet when

comparing the base version of Sharp and the version using the learned ordering, it does not

appear that one is clearly better than the other. Of the 160 games they played directly against

one another, both won 80, and their results against the other versions are mixed, with one

sometimes winning more games and sometimes the other.

To lend additional support to this observation, we computed the strength ratings of each of

these versions that would be implied by their match results under the Elo rating model.3We

obtained the results in Table 2.4.

Indeed, surprisingly, there was no statistically significant difference between the playing

3Using the free program BayesElo [7], with a prior of one win and one loss against a virtual opponent of Elo 0.
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None BTOrder BTPruneTo30 BTPruneTo10 BTPruneTo5

Elo rating −66± 23 −69± 23 20± 22 35± 22 81± 23

Table 2.4: Relative Elo ratings implied by the tournament results in Table 2.3, 95% confidence
intervals (note: each individual confidence interval was calculated assuming all other ratings
were accurate)

strength of the base version and the version using the Bradley-Terry ordering without prun-

ing.

There are a few possible reasons why we failed to observe any improvement in strength using

only ordering without pruning, even though the earlier results for expert move prediction accu-

racy indicate that the ordering function is very good. One possibility is that the limited form of

ordering that we do already in the base version of Sharp (searching the previous iteration’s move

first during iterative deepening) catches the best move frequently enough that the additional

gain in alpha-beta pruning from ordering alone isn’t very large. Another possibility is perhaps

that the gain from ordering consistently fails to allow the search to complete the next iteration

of depth. This could occur if the 5 seconds of search time we used happens to be a time limit

that consistently allows the search to reach a certain depth and such that reaching the next

depth consistently requires more than the gain from ordering alone.

However, the fact that we were able to use our learned ordering function to achieve gains in

performance even with extreme pruning demonstrates that it is effective at pruning and filtering

moves in actual search. If this were not the case, one would expect to see gradually worsening

performance as the pruning became more and more severe and lost more and more good moves.

We confirmed this by running a second round-robin tournament using versions of Sharp that

performed the same degrees of pruning, but without using the learned ordering. The results are

displayed in Tables 2.5 and 2.6.

As expected, we observed a catastrophic decrease in playing strength when we pruned moves

without the ordering. This is a sharp contrast to the rise in strength with the ordering. Drawing

from the earlier data on expert move prediction accuracy in Table 2.2, where 89.4 percent of

expert moves were caught within the top 5 percent of ordered moves and 10.6 percent were lost,

it is likely that at the most extreme level of pruning tested here, we are losing the best move

about once every 10 turns. However, the increased search depth more than makes up for this.

One must take some care in interpreting these results. For one, 5 seconds per move is a

relatively short search time, and it is possible that the improvement from pruning will be lessened

for longer search times due to diminishing returns. In the extreme case, if we had enough
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Base PruneTo30 PruneTo10 PruneTo5

Base - 33-7 39-1 40-0

PruneTo30 7-33 - 30-10 36-4

PruneTo10 1-39 10-30 - 31-9

PruneTo5 0-40 4-36 9-31 -

Table 2.5: Pairwise results of tournament between versions of Sharp, playing using 5 seconds per
move, with 40 games played per pair. Each entry is of the form “x-y” where x is the number of
wins by the row player, and y is the number of wins by the column player. The versions labeled
PruneToX prune all but X% of moves after the first ten, without using the learned ordering.

None PruneTo30 PruneTo10 PruneTo5

Elo rating 359± 100 73± 63 −118± 62 −314± 81

Table 2.6: Relative Elo ratings implied by the tournament results in Table 2.5, 95% confidence
intervals (note: each individual confidence interval was calculated assuming all other ratings
were accurate)

time to search the entire game tree and compute the precise minimax value, then obviously

performing such pruning at the root would give no improvement, and could only hurt the result.

Additionally, testing by self-play can sometimes be misleading.

Despite these concerns, the sheer degree of pruning enabled by the learned ordering function

and the clear performance gains it provides give a strong affirmation of its effectiveness in

practical search. In fact, using a slightly more conservative version method of pruning (where

“pruned” moves are still searched, but to a lesser depth), our program Sharp recently won the

2011 Arimaa World Computer Championship [30], and the efficiency gains from this method of

ordering and pruning were one of the major improvements that allowed it to do so.

2.5.5 Conclusion and Future Research

In summary, we demonstrated a highly effective method for expert move prediction and move

ordering in Arimaa. Using a simple feature-based framework with a generalized Bradley-Terry

model, we were able to capture almost 90 percent of all expert moves within only the top 5

percent of our learned ordering. Moreover, in an actual search, we were able to prune up to

levels as extreme as discarding 95 percent of all moves while observing a clear gain in playing

strength. By showing that machine learning can be successfully applied to the task of ordering
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and pruning moves in Arimaa, we believe we have opened a door for the exploration of further

techniques for handling the explosive branching factor and improving the effectiveness of search.

Additionally, we believe our current algorithm can still be improved, and we offer a few

possible ways for doing so.

While the actual application of the ordering function is extremely fast, computing the features

themselves is moderately expensive. Currently, ordering the typical 16000 moves or so at the

root takes roughly 1/10 to 1/5 of a second, which is too slow to be applied within a search tree

unless the search time is extremely large. However, if one could train a faster version of the

ordering function using a reduced feature set, one might be able to order and prune within the

search tree as well. Finding a way to prune within the tree, rather than just the root, could be

a huge additional gain.

Additionally, one could investigate ways to parallelize the Bradley-Terry training process

or ways of circumventing the memory limitation. While it is not possible to regenerate the

feature data every update, it may be possible to compute it once and store it on disk, where the

estimated terabyte of required space becomes easily possible. Assuming there is no overhead

for reading the data from disk each time, we estimate that the the training process would take

between a few weeks and a month on the complete training set. This is certainly feasible,

especially if the training could be parallelized. Training on the complete data would have the

potential to improve the learned feature values further, particularly for the features that occur

less commonly.

Lastly, one could investigate the addition of other feature types, such as pattern-based fea-

tures. Pattern-based features were notably absent from our feature set, because in informal

testing, we found that a straightforward addition of radius-two patterns did not improve the

prediction at all! Yet there is the possibility that larger or alternative types of patterns or

other new classes of features could increase the performance. A study of the moves currently

mispredicted could help lead to the discovery of these new features.



Chapter 3

Evaluation Functions in Arimaa

Whereas in Chapter 2, we examined ways to combat the extreme branching factor by learning

to order and predict moves, in this chapter, we attempt to solve the other main challenge facing

search in Arimaa, that of finding a good evaluation function.

To do so, we apply the tools of reinforcement learning and investigate whether it might

be possible to automatically learn a good evaluation function. In Section 3.1, we give some

background and explain our approach. In Section 3.2, we describe four algorithms for learning

evaluation functions, two of them using temporal differences and two of them learning directly

from a minimax search. In Section 3.3, we describe the features used for evaluation, and in

Sections 3.4 and 3.5, we discuss the details of our implementation, training and results.

3.1 The Problem of Evaluation

Since it is impossible to search the game tree to any significant depth, any method of search in

Arimaa requires some way to evaluate the board position and estimate the minimax value of

positions well before the end of the game. As discussed in Chapter 1, playout-based methods

are unlikely to work. Therefore, we need a heuristic evaluation function that can estimate how

much of an advantage one player or another has in a given game state. For this task, we apply

the framework of reinforcement learning, which has been used successfully in many other games

to learn effective evaluation functions [32, 2].

We consider the problem of reinforcement learning and reward estimation as applied to two

player adversarial games. As before, let S be the state space of the game, let M be the set of all

possible moves that could be made at any point in the game, let M(s) ⊂ M be the set of legal

moves in state s, and let m∗(s) ∈M(s) be the optimal move in state s. Then, additionally:

• Let T (s,m) be the state resulting from making move m ∈M(s) in state s ∈ S.

39
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• Let V (s) be the minimax value of state s ∈ S.

Our goal is to find some heuristic evaluation function H : S → R that approximates V as

well as possible, yet that is feasible to compute. We do this by selecting H from some class of

functions parametrized by some values θ ∈ Rk. For instance, we could consider the class of linear

evaluation functions (over some particular feature set or representation of the board), where θ

would be the weights of the linear components. Or, we could consider the class of functions

representable by a neural network with a certain structure, where θ would be the weights of all

the connections between each node in the network.

We consider the case of a learning agent playing a large number of games, possibly against

itself, or possibly against one or more other opponents. In each game, the agent plays according

to some policy and observes a sequence of states s0, s1, ..., sn, where each subsequent state

depends on the agent’s choice and the response of the opponent. The final state sn gives a

reward V (sn) equal to the outcome of the game, such ±1 for a win or loss.

Following the observation of a state or a game, the agent may perform an updateHθ(s) �θ ∗,
changing the value of θ so that the evaluation Hθ on state s agrees more closely with some

target value ∗. This update might be a single step of gradient descent or backpropagation on

the parameters θ. By varying when and how to perform this update, we can obtain any of

several different algorithms. We describe some of these algorithms in the next section.

3.2 Algorithms

We tested four different algorithms for performing the appropriate updates, each of which we

present below. Each of these algorithms has previously been successful for learning evaluation

functions in other games, and we will briefly mention these results as we proceed.

3.2.1 TD

Given an opponent that plays according to some policy π, we want Hθ(s) to estimate the optimal

expected return V π(s), obtained by maximizing at nodes where it is the agent’s turn, and taking

the expectation over the opponent’s choice of move according to π at nodes where it is the

opponent’s turn. If the game is stochastic, we also take the expectation over the state transition

probabilities of the moves of the game.

In the case where opponent’s policy π is optimal and the game is deterministic, V π is simply

the minimax value V , so that we update Hθ to approximate the optimal value of the game, as

desired.
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In temporal difference (TD) learning [27], we perform updates by considering the temporal

differences between the estimated expected values at each time step:

δi = Hθ(si)−Hθ(si−1)

Specifically, the agent plays a game against the opponent with policy π, and chooses the

action with greatest expected return according to Hθ on each turn. Then, at the end of each

game, having observed the sequence of states in the game s0, s1, ..., sn, we attempt to update the

value of each state to match the value of future states, under the assumption that the evaluations

of states closer to the end of the game are more accurate than that of the current state.

In the simplest form of temporal-difference learning, for each observed state si, we perform

the update:

Hθ(si) �θ
Hθ(si) + δi+1 = Hθ(si+1)

That is, we adjust the parameters to move the current evaluation towards the evaluation of the

immediate next state.

We may also consider the other extreme, that of the Monte-Carlo update, where we adjust

the evaluation towards the final value1:

Hθ(si) �θ
Hθ(si) +

n∑
j=i+1

δj = Hθ(sn)

The algorithm TD(λ) interpolates between these two behaviors according to a parameter

λ ∈ [0, 1] by performing the update:

Hθ(si) �θ
Hθ(si) +

n∑
j=i+1

λj−i−1δj

Or equivalently:

Hθ(si) �θ
λn−i−1Hθ(sn) +

n−1∑
j=i+1

(1− λ)λj−i−1Hθ(sj)

Intuitively, TD(λ) works by assigning an ever-decreasing proportion of the “blame” for re-

sults further and further into the future. The algorithm attributes an unexpected change in

the estimated value mostly to the moves immediately preceding the change in value, and expo-

nentially less to more distant moves, which are presumed not to have been the “cause” of the

change in value. As such, one might expect TD(λ) to perform best when λ is set to match as

1For simplicity of notation, we assume always that Hθ(s) = V (s) if s is a terminal state of the game.
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closely as possible the distribution of times over which a mistake becomes “evident” and starts

being reflected in later scores.

Most notably, TD(λ) was used successfully by Tesauro in the early 1990s to create the world-

class Backgammon player TD-Gammon [32]. However, succeeding with temporal difference

learning has been much more difficult in more tactical games [2, 4].

One additional modification to the algorithm that is sometimes used in adversarial games

when training against fallible opponents is to train only on the negative temporal differences

[2]. This is because a positive temporal difference δi = Hθ(si) − Hθ(si−1) indicates that the

agent’s estimation of the value unexpectedly rose, which could easily have occurred because the

opponent made a mistake and not because the agent misevaluated the position. By contrast,

an unexpected drop in the estimated value of a position indicates a clear misevaluation by the

agent.

3.2.2 TD-Leaf

The TD-Leaf algorithm is a variation of TD that was developed and used successfully in Chess

by Baxter, Tridgell, and Weaver [2]. It is essentially the same, except that the algorithm is

not applied directly to the observed game states, but rather to the leaf nodes of the principal

variations of a depth D minimax search from each of the game states. The principal variation

is the branch of the search tree resulting when both players choose the optimal move at each

node, where the optimal move is determined according to the (depth-limited) minimax values

computed by the search for each node.

Specifically, let HD
θ (s) be the minimax value of a depth D search starting at state s, using

θ as the evaluation function. Let TD(s) be the state at the leaf node of the principal variation

the search, so that Hθ(TD(s)) = HD
θ (s). Then, TD-Leaf updates using the rule:

Hθ(TD(si)) �θ
Hθ(TD(si)) +

n∑
j=i+1

λj−i−1δj

where

δi = Hθ(TD(si))−Hθ(TD(si−1))

The motivation for using TD-Leaf rather than standard TD(λ) derives from the difficulty of

obtaining an accurate evaluation without any lookahead. Unlike in Backgammon, it is extremely

difficult to obtain an accurate static evaluation in games such as Arimaa, Chess, or Othello, due

to the sharp variations in evaluation produced by short-term combinatorial tactics. In practice,

such tactics are always resolved with extensive search [2].
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This means that we can instead focus on making the minimax value Hθ(TD(si)) of a search

match the expected value of the game, rather making the value Hθ(s) of the current state match

the future value of the game. Since the minimax value HD
θ (s) is the value of the leaf node of the

principal variation Hθ(TD(si)),
2and the derivative of the minimax value d

dθH
D
θ (s) is (usually)

the same as d
dθHθ(TD(si)), we can adjust the minimax value by adjusting the value of the leaf.

Note that the derivatives may not agree in the case where a change in θ causes the principal

variation itself to change. In that case, the derivative of the value of the search with respect to θ

can be discontinuous, and we lose any theoretical guarantee of convergence. This can occur even

with an arbitrarily small change in θ, if another node along the principal variation has precisely

same minimax value. However, in practice, even if we ignore these problems, it is still possible

to obtain good results [2].

Intuitively, the advantage of performing updates using the leaf nodes is that the values be-

tween successive positions will be more stable or accurate, because we are performing a minimax

search at each step to resolve the short-term tactics. This partially relieves the learning algo-

rithm from the difficult task of having to accurately predict the result given the noise introduced

by the immediate tactics in a position.

3.2.3 Rootstrap

Unfortunately, as discussed by Veness, Silver, Uther, and Blair [35], there are some potential

drawbacks to the temporal-difference algorithms. One such drawback is that they depend heavily

on the actual sequence of positions in a game, and in particular, on the opponent. That is, for

any fixed opponent policy π, TD(λ) optimizes against π by attempting to estimate V π, rather

than estimating the true minimax value V . In theory, this is not necessarily an obstacle if the

algorithm trains against an improving opponent, such as itself, but in practice, training by self

play can be unreliable.

Another drawback they point out is that the distribution of positions observed in actual

games is likely to differ greatly from the distribution of positions observed within the search

tree. This could lead to inaccurate evaluations for types of positions that are rare in play but

common in search. Additionally, none of these algorithms takes advantage of the large amount

of data in the search tree resulting from a minimax search, only performing updates using the

root positions, or in the case of TD-Leaf, only the principal leaf.

Therefore, the authors present two new algorithms to address these issues, called Rootstrap

and Treestrap.

2This requires that the game be deterministic.
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In the Rootstrap [35] algorithm, upon observing any state s, we perform the update:

Hθ(s) �θ
HD
θ (s)

That is, we simply adjust the value of the current state to better correspond to the minimax

value of a search from the current state. This gives a simple for learning that removes the

dependence on the opponent.

3.2.4 Treestrap

In the Treestrap algorithm [35], upon observing any state s, we perform a depth D minimax

search and perform a update for every state in the search tree. Let T be the set of non-leaf

states occurring in the search tree, and let d(s′) be the depth of state s′ in the tree. Then, in

the process of performing the search, for all s′ ∈ T , we will have computed H
D−d(s′)
θ (s′), so for

every s′ ∈ T , we perform the update:

Hθ(s
′) �θ

H
D−d(s′)
θ (s′)

In practice, rather than perform a full-width minimax search, we may wish to use alpha-beta

pruning. In this case, many of the values computed for interior nodes in the search tree will be

upper or lower bounds rather than exact values. Let αDθ,s(s
′) be the upper bound computed for

s′ in a depth D alpha-beta search starting from the root s using the evaluation function Hθ, and

let βDθ,s(s
′) be the lower bound, so that βDθ,s(s

′) ≤ H
D−d(s′)
θ (s′) ≤ αDθ,s(s

′). For any particular

node, only one bound will be relevant - in the case of an alpha cutoff, we have βDθ,s(s
′) = −∞,

and in a beta cutoff, we have αDθ,s(s
′) =∞, and for exact nodes, both are equal to H

D−d(s′)
θ (s′).

Then we instead perform the updates:

Hθ(s
′) �θ

αDθ,s(s
′) if Hθ(s

′) > αDθ,s(s
′)

Hθ(s
′) �θ

βDθ,s(s
′) if Hθ(s

′) < βDθ,s(s
′)

By performing updates using nodes in the search tree, we obtain many more training in-

stances, potentially allowing for much faster learning. Moreover, we also train on a distribution

much closer to the one that the evaluation function will be applied on, namely the positions

occurring within a search tree. In Chess, both the minimax and alpha-beta versions of the

Treestrap algorithm were shown to greatly outperform Rootstrap and the temporal difference

algorithms, both in in speed of learning and the final quality of the evaluation function [35].

Table 3.1 summarizes the update rules of each algorithms, which are also depicted graphically

in Figure 3.1.
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Figure 3.1: Graphical depiction of each implemented algorithm. Arrows indicate which states
are used to update the evaluation for which other states. Modified and reproduced from [35].
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Algorithm Rule

TD Hθ(si) �θ
λn−i−1Hθ(sn) +

∑n−1
j=i+1(1− λ)λj−i−1Hθ(sj)

TD-Leaf Hθ(TD(si)) �θ
λn−i−1Hθ(TD(sn)) +

∑n−1
j=i+1(1− λ)λj−i−1Hθ(TD(sj))

Rootstrap Hθ(s) �θ
HD
θ (s)

Treestrap ∀s′ ∈ T, Hθ(s
′) �θ

H
D−d(s′)
θ (s′)

Table 3.1: Update rule for each implemented algorithm.

3.3 Performing Updates using Features

Just as for move ordering, we apply all of the above algorithms in Arimaa in a feature space

of various strategic and tactical features of the board, since learning to evaluate from the raw

board representation is likely to be extremely difficult. By mapping into a feature space, we can

extract out the otherwise discontinuous and hard-to-learn properties of the game and expose

them for direct evaluation, greatly increasing the smoothness of the function that we wish to

learn.

Because it is important that the evaluation function be computable extremely efficiently to

be usable in a tree search, we chose our evaluation functions to be linear functions over the

feature space, where θ is the vector of weights for each feature. Evaluation functions of this

form are simple to optimize and have been successful for other games [35]. Formally, given a

state s, we compute a feature vector φ(s) ∈ Rn and then we define:

Hθ(s) = θTφ(s)

Then, given a learning rate α, we perform an update Hθ(s) �θ
K by gradient descent:

θ := θ + α(K −Hθ(s))
dHθ

dθ
(s)

3.3.1 Features Implemented

Many of the features we use for evaluation are similar to the ones we used for move ordering.

However, for evaluation, we use features that are real-valued, rather than binary. This is because

in evaluating the whole board, we are interested in the number of occurrences of different features

across the board, whereas for ordering moves, we were more often interested in whether a move

had some certain property or not. While some of the features we specify below are still effectively

binary, they are converted into real values by setting them to 0 if not active, and 1 if active.
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As with our move ordering features, locations are normalized according to left-right symmetry

where relevant, and according to the player to move.

To evaluate a position, features are always computed twice, once from the perspective of each

player. Then, the feature vector for the opponent is negated and added to the feature value of

the current player. This allows a symmetric evaluation, and is also a natural way to evaluate

a position. For instance, if having a certain strategic formation is worth a certain value to the

current player, then it should be just as valuable to an opponent if held by the opponent, and

therefore of negative value to the current player in this case.

Since the various components of the raw feature vector can differ greatly in magnitude and in

rarity, for each feature, we computed its sample variance over every position in the 4121 games

of the training set we used for move ordering in Chapter 2, and for the purposes of the gradient

descent, we normalized the magnitude of each feature so that it had a sample variance of 1.

To handle the small number of features that never occurred in the training set and therefore

had sample variance zero, we added a small value of 0.01 to the computed variance of each

component prior to performing the normalization. Additionally, at the start of training, we

initialized the feature vector to begin with reasonable values for material features, set according

to current expert judgment.

Piece Type

Just as in the move ordering features, it is important to distinguish how strong a piece is

relative to other pieces. However, for the purposes of evaluation, it is more important to make

finer distinctions between the precise strength of a piece, since while pieces with similar but

distinct strengths may generally prefer to move in and be in the same areas of the board, the

long-term value of having such pieces could differ greatly. We distinguish 12 different types,

rather than only the 8 types earlier, as follows:

Type 0: Non-rabbit, 0 opponent pieces stronger

Type 1: Non-rabbit, 1 opponent pieces stronger

Type 2: Non-rabbit, 2 opponent pieces stronger

Type 3: Non-rabbit, 3 opponent pieces stronger

Type 4: Non-rabbit, 4 opponent pieces stronger

Type 5: Non-rabbit, 5 opponent pieces stronger

Type 6: Non-rabbit, 6 opponent pieces stronger

Type 7: Rabbit, 24-22 opponent pieces plus opponent non-rabbit pieces

Type 8: Rabbit, 21-19 opponent pieces plus opponent non-rabbit pieces

Type 9: Rabbit, 18-16 opponent pieces plus opponent non-rabbit pieces

Type 10: Rabbit, 15-12 opponent pieces plus opponent non-rabbit pieces

Type 11: Rabbit, 11-0 opponent pieces plus opponent non-rabbit pieces
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Material

As in Chess, the most significant factor in Arimaa evaluation is the amount of material each

player has.

Unfortunately, using static values for different types of pieces does not work well in Arimaa,

because aside from rabbits, pieces are only differentiated by their strength relative to one another.

In practice, the value of a piece increases greatly as pieces stronger than it are captured, and

increases somewhat when equally strong pieces are captured. Moreover, the value of rabbits

increases the fewer pieces total the opponent has, because they are much more able to threaten

goal. Therefore, the following material features depend only on relative quantities, rather than

absolute piece types:

MAT PIECE(s,e): Number of non-rabbit pieces with s (0-6) stronger opponent pieces and e (0-2)

equal opponent pieces.

MAT RABBIT(s,e): Number of rabbit pieces with s (0-8) stronger opponent pieces and e (0-8)

opposing rabbits.

Additionally, the relative value of rabbits increases as the number of rabbits becomes very few, as

losing all rabbits means losing the game by elimination. However, this change in value appears

to be nonlinear, being unnoticeable when there are many rabbits, and highly noticeable when

there are just one or two left. So we add the features:

RABBIT COUNT(c): Number of rabbits is c (0-8). (binary)

We also add in a heuristic material evaluation known as “HarLog” which is used by some top

bots, including our own. While the formula itself is arbitrary with no theoretical justification, it

was chosen and tuned by its developer in order to produce values that reasonably closely agree

with expert opinion on material values. The HarLog score for a single player is computed as

follows:

• Let Q = 1.447530126 and let G = 0.6314442034

• For each friendly non-rabbit piece with zero stronger opponent pieces, add 2/Q.

• For each friendly non-rabbit piece with n stronger opponent pieces, add 1/(Q+ n).

• Let r be the number of friendly rabbits and t the total number of friendly pieces.

• Add G(log r + log t).

We add in the HarLog score as a feature as well.

HARLOG: The HarLog score of the player.
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Piece-Square Tables

Different pieces are better or worse in different areas of the board. For example, elephants tend

to be strongest in the center, where they can reach and fight for any trap, whereas rabbits and

weak pieces are usually best remaining near the edges of the board. Additionally, the squares

adjacent to traps are often more valuable.

PIECE SQUARE(s,loc): There is a friendly non-rabbit piece on location loc (0-31) with s (0-6)

opponent pieces stronger than it. (binary)

RABBIT SQUARE(t,loc): There is a friendly rabbit on location loc (0-31), and the number of

opponent pieces plus the number of opponent non-rabbit pieces is t (0-24). (binary)

Trap Control

Maintaining “control” of traps is very important, and usually taking over one of the opponent’s

traps is a large advantage. As in our feature set for move ordering, we distinguish 8 different

statuses of defense around a trap, based on the number of defending pieces (0-4) whether or not

the elephant is next to the trap. Additionally, we distinguish whether the trap is on our own

side of the board or the opponent’s.

TRAP STATUS(s,ownside): Number of traps with status s (0-7) that are on own side of board if

ownside (0-1) is true, or opponent’s side if it is false.

We also include a heuristic calculation that estimates the current player’s control of a trap,

taking into account not just the pieces immediately defending the trap, but the other nearby

pieces as well.

The trap control heuristic is relatively complex. Its dominant component is computed by

iterating over all pieces within a manhattan distance of four from the trap. Each piece is

assigned a strength value in {32, 22, 17, 13, 11, 10, 9, 9, 9} according to the number of opponent

pieces stronger than it. This strength value is multiplied by a distance value in {18, 20, 13, 5, 2}
depending on that piece’s manhattan distance. The resulting values for all friendly pieces are

added together, and the resulting values for all opposing pieces are subtracted. Some additional

corrections are added depending on whether pieces are immediately threatened or frozen, for

control of key squares around the trap (the squares near the edge of the board are typically

safer to hold), and for weak pieces standing directly on the trap (which is good when the trap

is threatened by the opponent, since that piece can easily step off to become another defender,

but is bad when the trap is already strongly held, since it interferes with one’s own ability to

capture).
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The final value is included as a feature for the traps on the opponent’s side only, since the

traps on one’s own side will be accounted for when all of the features are computed separately

from the opponent’s perspective.

In practice, trap control appears to behave in a nonlinear fashion, in that increasing one’s

control of a trap that is under question is more important than increasing one’s control of a trap

that is already very strongly controlled, or very weakly controlled. Therefore, we also include

the same value with a logistic transform L(x) = 1/(1 + e−x) applied. For the logistic transform,

the values are scaled so that roughly the full range of trap control goes from x = −5 to x = 5.

TRAP CONTROL LINEAR: The sum of the trap control heuristics for the opponent’s traps.

TRAP CONTROL LOGISTIC: The sum of the logistic-transformed trap control heuristics for the

opponent’s traps.

Piece Advancement

We include some features that take into account the advancement of different pieces as well as

the different amounts of “influence” in their area.

Influence is determined by the same calculation as in the move ordering features. The square

under each piece is assigned a value in {75, 55, 50, 45, 40, 35, 30, 25, 15} according to the number

of opposing pieces stronger than that piece, using negative values for the opponent and zero

for empty squares, and then values are diffused four times, where for each adjacent square, a

diffusion transfers 0.16 of the value of that square.

ADVANCED BASE(type,y): The number of pieces of type type (0-11) at row y.

ADVANCED INFL(type,y): The total influence of pieces of type type (0-11) at row y.

Goal Threats

Rabbits are more valuable if they are threatening to reach goal soon. For each friendly rabbit,

we compute an approximation of the number of steps that it would take for that rabbit to reach

goal if the current player were allowed to make any number of steps in a row, without being

limited to just four steps per turn. These steps including possibly using other friendly pieces to

push opposing pieces out of the way or unfreeze the rabbit.

GOAL THREAT(s): The number of rabbits threatening to reach goal in approximately s (0-9)

steps.



CHAPTER 3. EVALUATION FUNCTIONS IN ARIMAA 51

Capture Threats

For each piece, we compute an estimate of the number of steps it would take the opponent to

capture that piece, as well as the number of steps it would take for the opponent to “attack” it

by placing a stronger piece adjacent to it.

CAPTURE THREAT(type,s,thisturn): Number of pieces of type type (0-11) threatened with cap-

ture in s (0-6) steps, where thisturn indicates whether or not it is actually the current player’s turn

and the capture can be performed immediately.

ATTACK THREAT(type,s): Number of pieces of type type (0-11) such that the opponent is threat-

ening to place an stronger piece next to it in s (0-6) steps.

ATTACK THREAT ROW(type,s,y): Number of pieces of type type (0-11) such that the opponent

is threatening to place an stronger piece next to it in s (0-6) steps, where the piece is on row y.

Blocking

Just as in move-ordering, we compute features for pieces that are blocked from entering or

leaving each square, either by a single sufficiently strong piece, or by a phalanx of multiple weak

pieces.

BLOCKED(type,dir,isphalanx ): Number of pieces of type type (0-11) blocked in direction dir (0-2),

where isphalanx (0-1) indicates whether a single piece or a phalanx was used.

Frames

There are several important long-term strategic configurations that can occur in Arimaa that

can have very high value, even comparable to the material value of a strong piece. One such

type of configuration is called a frame (see Appendix B for an illustration). In a frame, a piece

is stuck on a trap square with only one defender and is unable to step or push its way off that

trap square. This means that the single defending piece, usually the elephant, is unable to move

without sacrificing that piece. In this way, the holder of the frame can pin down the opposing

elephant using only weaker pieces, leaving his own elephant as the strongest free piece.

Not all frames are advantageous, however. In particular, if maintaining the frame requires

the elephant as well, then the holder of the frame does not always gain the strongest free

piece. Therefore, we compute a heuristic value that attempts to estimate whether a frame

provides an advantage, given the current material balance on both sides. This is roughly done

by pairing off the remaining pieces against the opponent’s pieces, adding or subtracting values in
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{500,140,50,20,10,5,2,1} for each pairing depending who has the strongest piece in that pairing,

with some minor corrections and adjustments depending on the details of the frame.

In general, the opponent’s only option against such a frame, aside from sacrificing the framed

piece, is to attempt to break the frame by moving other strong pieces to push or pull away the

pieces that are keeping the framed piece stuck on the trap. Therefore, it is important to consider

also how many steps the opponent is away from breaking the frame when assessing its value.

To enable better generalization, since frames are relatively rare, we include redundant features

below that apply regardless of the number of steps to break the frame.

FRAME BASE(type): Number of pieces of type type (0-11) framed.

FRAME VALUE(type): Heuristic value of framed pieces of pieces of type type (0-11).

FRAME BASE BREAK(type,s): Number of pieces of type type (0-11) framed, breakable in s (1-8)

steps.

FRAME VALUE BREAK(type,s): Heuristic value of framed pieces of type type (0-11), breakable

in s (1-8) steps.

Hostages

Another important long-term strategic configuration is called the hostage (see Appendix B for an

illustration). In a hostage situation, a stronger piece can holds a weaker opposing piece hostage

near a trap square so that it cannot escape and so that it is threatened with capture so long as

the trap is not defended. Such a situation can also give the strongest free piece. For instance, in

a camel hostage, the elephant holds the opposing camel hostage, forcing the opposing elephant

to defend. This effectively takes both elephants and the opposing camel out of play from the

rest of the board, leaving the friendly camel as the strongest free piece.

Not all hostages are profitable, however. In the same manner as for frames, we also compute

a heuristic value for hostages to try to estimate whether holding the hostage gives a long term

advantage, such as, most notably, having the strongest free piece.

HOSTAGE BASE(heldtype,holdertype): Number of instances of piece of type holdertype (0-6) hold-

ing opponent piece of type heldtype (0-11) hostage.

HOSTAGE VALUE(heldtype,holdertype): Heuristic value of piece of type holdertype (0-6) holding

opponent piece of type heldtype (0-11) hostage.
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Elephant Blockades

Another important long-term strategic configuration is called the elephant blockade (see Ap-

pendix B for an illustration). It is possible for a large number of weak pieces to surround the

opposing elephant near the edge of the board and prevent it from moving. This is often massively

advantageous for the side holding the blockade.

Again, not all blockades are valuable, particularly if the elephant itself is required to hold

the blockade. Just as with frames and hostages, we compute a heuristic estimate that tries to

determine if holding the blockade leads to an advantage by estimating to what degree it provides

the strongest free piece.

The position of a blockade matters greatly, because on the edge, they require many fewer

pieces to hold, and on the opponent’s side of the board, the opponent’s own pieces can be used to

help the blockade. Additionally, partial blockades can also be profitable, but to a lesser extent.

Therefore, we add a heuristic parameter called “tightness”, where 0 indicates that the elephant

can’t move at all, 1 indicates that the elephant can move, but not very usefully, and 2 indicates

that the elephant can move and free itself, but could take some time to do so.

As with frames, the opponent’s only recourse is often to try to break the blockade, by advanc-

ing other strong pieces to push or pull away the numerous weak pieces that form the blockade.

Therefore, as with frames, we compute an estimate of the number of steps that the opponent is

away from breaking the blockade.

To enable better generalization, we separate out many of these features into separate classes.

EBLOCKADE CENTRAL(d,t): Elephant blockaded at manhattan distance d (0-6) from the center

four squares of the board, and the blockade has a tightness of t (0-2). (binary)

EBLOCKADE ROW(y,t): Elephant blockaded on row y (0-7), and the blockade has a tightness

of t(0-2). (binary)

EBLOCKADE CENTRAL VALUE(d,t): Heuristic value of elephant blockaded at manhattan dis-

tance d (0-6) from the center four squares of the board, and the blockade has a tightness of t(0-2).

EBLOCKADE ROW VALUE(y,t): Heuristic value of elephant blockaded on row y (0-7), and the

blockade has a tightness of t(0-2).

EBLOCKADE CENTRAL BREAK(d,s): Elephant blockaded at manhattan distance d (0-6) from

the center four squares of the board, and the blockade can be broken in s (1-8) steps. (binary)

EBLOCKADE ROW BREAK(y,s): Elephant blockaded on row y (0-7), and the blockade can be

broken in s (1-8) steps. (binary)
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EBLOCKADE CENTRAL BREAK VALUE(d,s): Heuristic value of elephant blockaded at man-

hattan distance d (0-6) from the center four squares of the board, and the blockade can be broken

in s (1-8) steps.

EBLOCKADE ROW BREAK VALUE(y,s): Heuristic value of elephant blockaded on row y (0-7),

and the blockade can be broken in s (1-8) steps.

Elephant Mobility

In general, the ability of the elephant to move quickly around the board is critical, since it is

the strongest piece. This motivates some additional features, measuring various aspects of the

mobility of the elephant.

EMOBILITY 3(d,n): The elephant is at a manhattan distance d (0-6) from the center of the board

and can reach n (0-31) different squares on the board by making 3 steps, including pushes/pulls.

(binary)

EMOBILITY 4(d,n): The elephant is at a manhattan distance d (0-6) from the center of the board

and can reach n (0-31) different squares on the board by making 4 steps, including pushes/pulls.

(binary)

E TRAP DIST(d,t): The elephant is at a manhattan distance of d (0-5) from trap t (0-3).

3.4 Implementation and Training

3.4.1 Algorithm Parameters and Implementation

We implemented all four algorithms, TD, TD-Leaf, Rootstrap, Treestrap, using the above fea-

ture set with a linear evaluation function, updating weights by gradient descent. A series of

preliminary experiments were performed to determine reasonable learning rates. For each algo-

rithm, we settled on a learning rate of α = 10−6 (surprisingly, the same for each algorithm). For

each algorithm, we found that this was roughly the highest rate that gave relatively consistent

results. Higher rates tended to give unreliable results, sometimes giving moderately higher rates

of improvement but also frequent unlearning and occasional divergence of weights.

For both of the temporal difference algorithms, we set λ = 0.7, a value that has been used

successfully by in reinforcement learning in Chess [2]. It seems plausible that a similar value

might work as well in Arimaa, given that the total game length in turns is comparable and that

the time-scale in turns over which various tactics “pay off” is not too different. However, we did

not attempt to tune the value of λ.
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TD and TD-Leaf only performed updates only at the ends of games, and additionally, both

algorithms used the modification of only training on negative temporal differences, which ap-

peared to perform at least as well, and possibly slightly better during informal testing.

Treestrap was implemented using an alpha-beta search, and the alpha-beta version of the

algorithm was used for training. Additionally, a step-based search was used, as described in

Chapter 1. This means that the internal nodes of the tree used for updates include numerous

positions where only part of the steps of the current turn have been made. From the perspective

of achieving a good distribution of training instances, this is desirable, because in performing a

step-based search, the evaluation function is frequently called on positions with only part of the

steps made.

Unlike the temporal-difference methods, both Rootstrap and Treestrap performed updates

on every position. Since they do not depend directly on the temporal sequence of positions

within a game, the updates were also performed at the end of each move, rather than at the end

of each game.

For Treestrap, although all the interior nodes of the tree were used for updates, this was

not done until the end of search, so as not to change the evaluation function while the alpha-

beta search was ongoing. Nodes within a quiescence search (described below) were not used for

updates, although the results of quiescence searches were used. Additionally, the learning rates

for updates within the tree were normalized by the number of nodes in the tree, as we found

that without doing so, the learned weights behaved erratically, even sometimes diverging.

3.4.2 Playing Algorithm

For each of the algorithms, we played a learning agent using that algorithm against our hand-

coded program Sharp over a series of 2000 games. We then evaluated the learned weights by

playing a non-learning agent using those weights in a series of 100 games against Sharp running

at various depths, as well as an older 2010 version of Sharp. Draws were counted as half of a

win.3

The search algorithm used for the learning agents was the same search algorithm as used

by Sharp. This is an iterative-deepening alpha-beta search that incorporates the standard

enhancements described earlier in Section 1.4 of Chapter 1, namely hash tables and quiescence

search. In addition to pruning repeated positions, the hash table also caches the best moves in

3The Arimaa rules actually have no provision for draws because draw-like situations essentially never happen
in human games. In computer games, they can sometimes occur when both programs reach a simultaneous local
maximum in their evaluations and remain in it for a very long time, permuting pieces slightly to avoid third-time
repetitions. To handle this, we consider a game a draw if it lasts more than 500 moves.
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each subtree, which are used for move ordering on subsequent iterations. The remaining moves

are sorted by the history heuristic [25]. Additionally, the Bradley-Terry ordering developed in

Chapter 2 was used to order (but not prune) the moves at the root node of the search.

The quiescence search extends critical lines of the search involving captures to improve the

tactical evaluation. It is allowed to perform up to 3 steps in a single turn that capture pieces or

defend against possible captures by the opponent. These 3 steps are followed by up to 4 steps

of just captures, without any capture defenses, for a maximum 7 steps of quiescence search.

Additionally a static decision tree is applied at each node in the search for detecting whether

a goal by any rabbit is possible within four steps. Whenever the player to move can goal, the

branch of the search is terminated immediately with the appropriate winning score returned.

Otherwise, if the opponent can goal, the move generator is restricted to only a subset of moves

within a certain radius of the goaling rabbit, a radius for which it is provable that any more

distant move cannot be relevant to stopping the rabbit. These goal defense moves are also added

to the quiescence search when goals are threatened during the quiescence search.

3.4.3 Opponents

Our primary opponent for both testing and training was Sharp. Although Sharp uses the same

search algorithm as the learning agents, its uses a hand-coded evaluation function, rather than

a learned one. Some of the heuristic components used in the function are similar to the features

in our feature set above, most notably much of the trap control heuristic, but the evaluation

overall is different, and is in fact somewhat more complex than our feature set above.

The 2010 version of Sharp from a year ago was also used as a testing opponent. It differs

enough from the current version that it is not too unreasonable to consider it a different program

entirely. Most of its evaluation function is fundamentally different, as is its method of quies-

cence search. Additionally, its playing style is more defensive and “home-oriented”, whereas

the current version plays a very aggressive “attack-oriented” style. Having the 2010 version as

a testing opponent helps confirm that any differences in playing strength among the learning

agents are general, as opposed to exploitative of a single opponent or playing style. Sharp 2010 is

slightly stronger than the current Sharp when searching to equal depth, but the current version

is stronger when searching for the same amount of time.

3.4.4 Search Depth

Despite the speedup of alpha-beta pruning and the use of good move ordering and hash tables,

it remains extremely difficult to search deeply in Arimaa. In order to run enough games, we
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were only able to perform searches to a depth of 5 steps during training. This is a lookahead

of only one turn, followed by one step of the opponent’s turn. However, in lines of the search

involving capture or goal threats, the quiescence search extends this up to a maximum of 12

steps, or three turns of lookahead. This is still very limited, but enough to see many of the basic

tactics in the game.

Games for testing the weights were performed with Sharp searching at depths of 4, 6, and 7

steps, and the agent using the learned weights searching at a depth of 6 steps.

3.4.5 Ensuring Randomness

One thing we strongly wish to avoid in both training and testing is for identical or nearly

identical games to be played over and over due to a lack of randomness by the players.

We avoid this in a few ways. Firstly, Sharp varies its moves sometimes. This is done by adding

a small random value to its evaluation of each position, drawn from an approximately Gaussian

distribution, with standard deviation scaled to around 1/40th of the value of a rabbit. This

causes Sharp to sometimes choose different moves in the same position if those moves lead to

positions that it judges to be very close in value. Additionally, we gain some amount of variation

during training games simply as a result of the learned weights changing over time, although

not during testing. Finally, a significant amount of randomness comes from our procedure for

the setup phase, as described below.

3.4.6 Setup Phase

One thing we have neglected to address so far is the process of setting up the board. Up until

now, we have only considered algorithms and methods for making moves on the board. However,

as explained in the rules, Arimaa actually begins with a setup phase where both players place

their pieces within their two home rows.

Fortunately, as long as a setup is used that is not too bad, it does not matter too much,

since the actual fighting and maneuvering in the middle of the game during normal play is much

more important in determining the outcome of the game, especially with the very low depth

limits used in our training and testing games. Therefore, we are relatively free to vary the setup,

allowing it to become a tool for us to introduce additional randomness into the game.

We use a randomized method that generates numerous random setups and keeps the one with

the best score according to a scoring method. Setups with stronger pieces in front, rabbits on

the sides and back, and the elephant near the center are given higher scores and are significantly

more likely to be chosen. Manual inspection indicates that while many of the setups produced
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Figure 3.2: Elo ratings over the course of training with 95% confidence intervals. For all algo-
rithms, α = 10−6, and for TD and TD-Leaf, λ = 0.7. Training opponent was Sharp, training
searches were done to depth 5, testing at depth 6.

by this method may not be great, they are mostly reasonable and not too disadvantageous. At

the same time, there is enough random variation that nearly every setup during the course of

training and testing is unique.

3.5 Experimental Results

3.5.1 Comparison of Algorithms

We tested all four algorithms as described above, training against our program Sharp for 2000

games, with both the learning agent and Sharp searching to a fixed depth of 5 steps. Each run

took approximately a week. At various points, we evaluated each agent against both the current

and the 2010 versions of Sharp searching to various fixed depths. For the testing games played

to determine the Elo ratings, the learned agents searched to a fixed depth of 6 steps. The results

are displayed in Figure 3.2 and in Table 3.2.

Out of all the algorithms, Rootstrap performed the best, and in particular, outperformed the

Treestrap algorithm. This is surprising, because it is opposite to the results obtained by Veness
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Sharp Version & Depth D4 D6 D7 2010D4 2010D6 2010D7

Untrained 70 10 3 46 9 3

TD 132 45 28 128 47 27

TD-Leaf 130 48 22 118 46 40

Rootstrap 137 51 34 135 45 40

Treestrap 132 29 16 106 27 25

Table 3.2: Evaluation of the final agents produced by each algorithm, searching to depth 6
against both current and 2010 versions of Sharp searching to various depths. Each box indicates
the number of games won by that agent against Sharp out of 200 games.

et al. [35], where the Treestrap algorithm outperformed the Rootstrap algorithm by a large

margin in Chess. One would intuitively expect Treestrap to outperform Rootstrap because it is

essentially the same algorithm performing the same updates, except that it uses the intermediate

results in the search tree to perform additional updates and thereby learn faster.

This was not quite the case for our implementation, since we always normalized by the number

of nodes in the search tree. However, we found that even at higher learning rates, Treestrap

continued to underperform, and like the other algorithms, became unstable and likely to unlearn

or diverge.

We believe the poor performance of Treestrap occurred because the search depths were too

shallow. As discussed earlier, due to computational limits, we were only able to search 5 steps

deep for each move, which is barely greater than 1 turn (although this was extended by the

quiescence search at many nodes). As a result, it appears that the additional updates performed

by Treestrap using the interior nodes did not add any significant useful information for learning,

because they were always from very similar positions, and rather merely acted as a source of

additional noise. Moreover, because they were searched to an even shallower depth than the

root, the resulting updates would be of much lower quality.

Both of the temporal difference algorithms performed very well, almost at the level of Root-

strap, and it is easily conceivable that as parameter settings and the precise training methods

are varied, Rootstrap and the temporal difference algorithms could easily alternately overtake

one another. We suspect that a reason for the strong performance of the temporal difference

methods relative to Rootstrap is the relatively low search depth, making learning from minimax

search not as effective. Furthermore, it is possible that they were more effective at learning

longer-term strategic features. Given this, it is not surprising that they did well, even in a

moderately tactical game. Also notable is the fact that both TD and TD-Leaf performed very
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similarly, and again, we attribute this to the relatively shallow depth of the search tree.

Unfortunately, while significant learning did occur with all algorithms, none of them were

quite able to meet the performance of our hand-coded evaluation in Sharp, and the most games

any agent won against Sharp at an equal search depth of 6 was the Rootstrap agent’s 51 wins

out of 200. However, as seen in the next section, it is possible to achieve even better results

with a higher learning rate, although not consistently.

3.5.2 Higher Learning Rates

As we mentioned earlier, our learning rate of α = 10−6 was chosen because it was the highest

learning rate that appeared to give relatively consistent results for each algorithm.

At higher learning rates, all algorithms exhibited much less stability, frequently unlearning

good results and plummeting in performance due to the weights diverging or wandering to poor

values due to noise. However, they also occasionally achieved results that were significantly

better than the versions with lower learning rates.

Our best result was achieved by one particularly spectacular run using Rootstrap with a

significantly higher learning rate of α = 10−5 rather than α = 10−6, and is depicted in Figure

3.3.

Sharp Version & Depth D4 D6 D7 2010D4 2010D6 2010D7

Rootstrap, α = 10−5 165 74 59 144 63 54

Rootstrap, α = 10−6 137 51 34 135 45 40

Table 3.3: Evaluation of the agents in 3.3 at their respective peaks. Each box indicates the
number of games won by that agent against Sharp out of 200 games.

What is exciting about this result is that, as seen in Table 3.3, the performance of the agent

using the higher learning rate, at its peak, was not too far from the performance of our hand-

coded evaluation in Sharp. At an equal search depth of 6, the agent won 74 games out of 200

against Sharp, indicating that it was indeed not much weaker than Sharp. We find these results

strongly encouraging.

This and one or two similar results in our testing indicate that there exist much stronger

evaluation functions over the current feature set that are not yet being found. Furthermore,

they suggest that all it may take to achieve them are improvements in the training process, such

as a larger number of training games, adaptive learning rates, and deeper search depths during

training.
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Figure 3.3: Elo ratings over the course of training, with 95% confidence intervals. A learning
rate of α = 10−5 performs very well, until a sudden drop after 2000 games!

The only limitation so far has been time, since playing thousands of games to test various

parameters is costly, as is increasing the search depth or the number of training games. Because

of this, we have not yet had the time to fully pursue such alternatives after our initial testing

and tuning of the learning rates and our obtaining of these results. However, we believe that

with additional work, we have every chance to surpass the current performance.

3.5.3 Future Directions

We offer some additional directions by which we might be able to surpass our hand-coded

evaluation and improve the state of evaluation in Arimaa.

Even though Rootstrap performed the best in our testing, it only did so by a small mar-

gin, and even among just these four algorithms, it is not clear yet which will prove to be the

most effective for Arimaa. In particular, we believe that there is substantial potential for the

Treestrap algorithm and variants of it still to succeed, particularly if we increase the search

depth. Even with the relatively shallow search depths, we believe there is much information in

the search not being exploited optimally yet. It is also possible that there is a bug in our current

implementation, and if so, we might observe substantially better performance if it were fixed.
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Moreover, we believe there is potential for considering a hybrid algorithm that uses both tem-

poral difference methods and direct backups from the search tree as in Rootstrap and Treestrap.

Under the hypothesis that direct backups using minimax values from the tree are more effective

detecting short-term tactics and learning weights for features that correlate with them, and

under the hypothesis that temporal difference updates are more effective at weighting strategic

features that lead to long-term losses or gains in the future, perhaps a hybrid algorithm would

be able to get the best of both worlds.

Thirdly, we believe that improvements to the current feature set may help significantly.

Currently, there are a number of straightforward tactical and strategic features that we are

missing, such as frozen pieces, specific features for goal threats and defenses, and combined

features for trap control and advancement. One might also try the addition of pattern-based

features, or look at methods for automatic detection of potential features.

Finally, given the relative success of these algorithms at learning when initialized with only

raw material weights, one wonders how much better they might do if used to optimize an existing

evaluation function. Granted, there are additional challenges associated with tuning some of the

nonlinear components of evaluation functions like the one currently used by Sharp. However, we

believe that there are many possibilities here, and this is something we hope to try with Sharp’s

evaluation in the near future.



Chapter 4

Conclusion

In Chapter 2, we showed that using a generalized Bradley-Terry model, it is possible to learn a

highly accurate move-ordering function for Arimaa, and moreover that such a function can be

used effectively for pruning to speed up search and improve the level of play. Our move ordering

function succeeds almost 90 percent of the time in ranking the expert move within the top 5

percent of the ordering, and we have used it to great success in our current program Sharp to

prune moves and improve the efficiency of the search, increasing the strength of the program by

around 140 Elo at short time controls.

In Chapter 3, we showed that any of several algorithms is capable of substantial automated

learning in Arimaa, beginning with only raw material weights. While none of them were able to

achieve the same level of performance as our hand-coded evaluation, our best result came quite

close, winning 74 out of 200 games against our bot Sharp at equal search depths. Additionally,

there is evidence that significant improvement is possible, and that with future work, it will be

possible to use such techniques to surpass the best current methods for evaluation in Arimaa.

In both move ordering and evaluation, we gave several possible avenues by which our results

might be improved further. For move ordering, there is a possibility for massive improvement

in finding a way to compute the move ordering more efficiently so as to use it to prune within

the tree as well. There is also the potential to improve the prediction accuracy by resolving the

memory usage of the Bradley-Terry model optimization to allow the full data set to be used.

For learning an evaluation function, it is almost certainly the case that our current training

procedure can be improved, and we believe also that there is the potential for improvements in

the algorithms themselves. And in both of these areas, we believe that there are gains to be

made by adding new types of features to the feature sets we used. All of these have the potential

to further the results we have achieved so far.

Overall, we believe our work is a vindication for the ability of machine learning to improve the

state-of-the-art in Arimaa. We have demonstrated that there is much potential for algorithms

63
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and techniques in ranking, classification, and reinforcement learning to raise the level of computer

play, and there remains much to be explored and tried. We believe through a combination of

such techniques and continued improvements in search and evaluation, it will be possible to

achieve world-class-level play in Arimaa, perhaps even within the next decade.
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Appendix A

Derivation of the Bradley-Terry Up-

date Rule

We reproduce the analysis and optimization procedure described in [6].

In summary, in our generalized Bradley-Terry model, we consider competitions between teams

of agents where agent i has strength γi. The strength of a team T ⊂ [1, ..., N ] is γ(T ) =
∏
i∈T γi,

and in a competition between teams T1, ..., Tn, the probability that Tj wins is:

P [Tj wins] =
γ(Tj)∑n
i=1 γ(Ti)

Given a series of results Rj of competitions and the winners of those competitions, we seek the

strengths γ = (γ1, γ2, ..., γm) that optimize the likelihood:

P [R|γ]

Assuming independence of the results:

P [R|γ] =
∏
Rj∈R

P [Rj |γ]

Then, by the model, every individual P [Rj |γ] is of the form:

γ(Tw)∑n
k=1 γ(Tk)

=

∏
i∈Tw γi∑n

k=1

∏
i∈Tk γi

where w is the index of the winning team.

Focusing on a single γi that we wish to update, and fixing the values of all other parameters

in γ as constants, we may write this as:

γ(Tw)∑n
k=1 γ(Tk)

=
Aijγi +Bij
Cijγi +Dij
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where Aij , Bij , Cij , Dij are constants and either Aij = 0 or Bij = 0. In particular Aij 6= 0 iff the

winning team contains feature i.

For example, if we have have three teams T1 = {1, 2, 3}, T2 = {2, 4}, T3 = {1, 5, 6, 7}, and T1

is the winner, then:

P [Rj |γ]

=
γ1γ2γ3

γ1γ2γ3 + γ2γ4 + γ1γ5γ6γ7

=
(γ2γ3)γ1 + 0

(γ2γ3 + γ5γ6γ7)γ1 + γ2γ4

so that Aij = γ2γ3, Bij = 0, Cij = γ2γ3 + γ5γ6γ7 and Dij = γ2γ4.

Then, we use minorization-maximization on the log probability to update γi. We have:

logP [R|γ]

= log

N∏
j=1

Aijγi +Bij
Cijγi +Dij

=
N∑
j=1

log(Aijγi +Bij)−
N∑
j=1

log(Cijγi +Dij)

Since for every j either Aij = 0 or Bij = 0, for the left sum, we obtain terms of the form logBij

or logAij + log γi. In each case, we may drop all the constants logAij and logBij since they do

not affect the maximization, and letting Wj be the number of times Aij 6= 0, we may maximize:

Wj log x−
N∑
j=1

log(Cijx+Dij)

where currently x = γi. We minorize the right sum by taking the tangents to the logarithms at

x = γi, and after simplification, the expression to be maximized becomes:

Wj log x−
N∑
j=1

Cijx

Cijγi +Dij

Letting Ej = Cijγi+Dij be the total strength of all participants in competition j, the maximum

is achieved at:
Wj∑N
j=1

Cij
Ej
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And therefore, our update rule for a single γi is:

γi ←
Wj∑N
j=1

Cij
Ej

We do not prove any theoretical results here for the convergence of our generalization of the

Bradley-Terry model. For a discussion on the general convergence properties of this type of

minorization-maximization on Bradley-Terry models, see [15], as well as [14].



Appendix B

Strategic Formations in Arimaa

There are several strategic formations in Arimaa that can be very valuable over the long-term.

Most of them involve various ways of limiting the mobility of stronger opposing pieces using

weaker pieces, so that one’s own pieces become the strongest on the remainder of the board. We

describe a few such formations here.

Phalanxes

Figure B.1: Both Gold and Silver have formed phalanx formations to block the movement of
opposing pieces.

A large number of strategic formations in Arimaa use subformations called phalanxes in order

to block pieces from reaching certain squares. In a phalanx, a cluster of weak pieces blocks every

available space around a certain piece. This prevents a stronger opposing piece from pushing
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into that square, simply because there is no empty square for the pushed piece to be displaced

to. Such formations are created very frequently during the game.

For example, in Figure B.1, the highlighted cluster of gold rabbits around g2 blocks the silver

camel at g3 from pushing its way south, because there is no adjacent empty space where the

gold rabbit at g2 could be pushed to. This greatly delays the threat of silver’s h3 rabbit, because

if the camel could push its way south, it would not be long before it could push enough pieces

out of the way to allow the silver rabbit to reach goal.

Similarly, there is a gold phalanx at d5, preventing the silver elephant from going west to

defend the c6 trap. This guarantees that gold will be able to start capturing silver pieces in that

trap.

Silver has his own phalanxes at e6 and d7 preventing the gold elephant from moving into

those squares, but unfortunately, they are less helpful, since Gold’s elephant is fine remaining

where it is, capturing pieces in the c6 trap. This illustrates that sometimes phalanxes may not

be as useful. Nonetheless, they are an important component of tactics in Arimaa, and form key

pieces of some of the subsequent formations.

Frames

Figure B.2: The silver elephant on d3 cannot move without sacrificing the horse framed on c3.
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Figure B.2 illustrates a the strategic formation in Arimaa known as a frame. In this position,

the silver horse cannot push its way off of the c3 trap square because it is framed by the two gold

horses and a phalanx of weaker pieces to the south. This means that the silver elephant cannot

move either, because it is the only defender of the horse, and moving would cause the horse to

be captured. Therefore, Gold’s elephant is now the strongest free piece on the remainder of the

board, giving Gold an advantage. Silver’s only options are to try to break the frame by bringing

his camel to remove the gold horses, or to sacrifice his horse, accepting a major material loss to

regain the mobility of his elephant.

Hostages

Figure B.3: The silver elephant holds the gold camel hostage next to the f6 trap, forcing the
gold elephant to defend.

Figure B.3 depicts another common strategic formation in Arimaa, known as the hostage.

The gold camel on g7 is frozen by the silver elephant and is continually threatened with capture

in the f6 trap. This prevents the gold elephant from moving away from that trap, since otherwise

Gold would lose one of his most valuable pieces. Therefore, Silver’s camel becomes the strongest

free piece on the rest of the board. Moreover, Silver’s horses can attack freely, since the only

pieces that could threaten them, the gold elephant and camel, are occupied.

Possibly Gold’s best option is to advance a large number of pieces to try to defend the f6

trap with multiple weaker pieces and free his elephant again, before the silver horses and camel

cause too much damage. If that does not work, Gold can only settle for moving his elephant
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away to attack one of Silver’s horses, accepting an unfavorable horse-for-camel trade.

Figure B.4: The gold horse on g3 holds a silver cat hostage. The silver horse on b6 holds a gold
rabbit hostage.

Other types of hostages are also common, such as in Figure B.4, where gold holds a cat

hostage on h3 using his horse. Silver also holds a rabbit hostage on a6 using his own horse, but

not for much longer, since the gold elephant and camel are about to pull the horse away.

Elephant Blockades

A particularly devastating formation in Arimaa is the elephant blockade. In Figure B.5, Gold’s

elephant is blocked on three sides by silver phalanxes, and the only remaining direction it can

step is into a trap, where it would immediately be captured. With Gold’s elephant unable to

move, Silver’s elephant dominates the board. Gold’s only hope is to try to free his elephant by

using his horses and camel to break the blockade, but with both the silver elephant and camel

active in the center, Silver will almost surely be able to win something in the meantime.
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Figure B.5: The gold elephant is blockaded.


