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ABSTRACT 

 

Arimaa is a two-player game that was intentionally designed to be difficult for computers 

to play well. In this game, each move is composed of up to 4 steps, which gives Arimaa a 

large branching factor preventing computer programs from searching deep. 

We have created an Arimaa-playing program, which contains a multi-functional move 

generator, an evaluation function, and a search engine with many Alpha-Beta search 

algorithm enhancements implemented. The large branching factor in Arimaa is challenging, 

but through some innovative techniques, it can be partially overcome. This has enabled us 

to create a program strong enough to challenge the current computer champion. 
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Chapter 1  

 

INTRODUCTION 

 

1.1 Introduction to Arimaa 

Computers have successfully challenged and defeated humans in many strategy games, like 

Othello [3], Checkers [15], and Chess [9]. They did this using a combination of deep 

brute-force search and minimal human knowledge of how to play the game well. 

Omar Syed, a former NASA computer engineer, believed that even though brute-force 

searching computers had made such impressive achievements, they were still even not 

close to matching the kind of real intelligence used by humans in playing strategy games. 

To prove his point, he and his son designed a 2-player game called Arimaa in 1997, which 

was intentionally made “easy” for the human players, but “hard” for the computers [17]. 

When playing strategy games such as Chess, the computer is actually exploring all the move 

combinations to look ahead as far as possible, so that it can pick out the move that leads to 

the most favorable position. This brute-force approach of examining each move as deep as 

possible is quite different than the way used by humans. Humans typically do little search, 

but use lots of knowledge. This was taken to the extreme in the 1997 Deep Blue versus 

Kasparov chess match: man 2 positions per sec; machine 200,000,000 positions per second 

[9]. 

The game of Arimaa exploits this difference by having a very large set of legal moves in a 

position (the so-called branching factor). Since the size of the search tree is based on db  

(b for branching factor and d for search depth), the large branching factor of Arimaa results 
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in the search tree size growing rapidly, making a deep search impractical even on the most 

advanced computer. By contrast, for the human players, the branching factor does not 

influence the difficulty of the game as much. The challenge is to build a computer program 

capable of playing a strong game of Arimaa [17]. 

 1.2 Rules of Arimaa 

Arimaa is a game for two players, Gold and Silver, played on an 8x8 board with a 

standard chess set [18]. Pieces are given different names. Each player has 1 Elephant, 1 

Camel, 2 Horses, 2 Dogs, 2 Cats and 8 Rabbits, in order from the strongest to the 

weakest. See Figure 1.1 

 

 

Name Picture Gold Abbr. Silver Abbr. Number Strength 

      
Elephant 

 

E e 1 Strongest 

Camel 
 

M m 1 2nd
 
 

Horse 
 

H h 2 3
rd

 

Dog 

 

D d 2 4th 

Cat 

 

C c 2 5th 

Rabbit 

 

R r 8 Weakest 

Figure 1.1: Arimaa pieces. 

 

The game starts with the players setting up the pieces on their nearest two rows. There is 

no fixed initial position, so the pieces may be placed in any arrangement (see Figure 1.2). 

There are 64 million different possible initial arrangements, so it is almost impossible for 

a computer to use pre-computed databases of opening analysis [5]. So far there is no 

conclusion as to which arrangement is the best; different arrangement may lead to a 

different strategy. 
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Figure 1.2: Setting up. Note the initial arrangements of the two players are different. 

The goal of this game is to get any one of the 8 weakest pieces (Rabbit) across the board 

to the other side. All pieces have the same mobility: they can move forward, backward, 

left and right. The Rabbit (weakest piece) cannot move backwards. 

A single move consists of up to 4 steps. Moving one piece to an adjacent square 

vertically or horizontally counts as one step. 

 

Figure 1.3: A typical situation. 
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For example, in Figure 1.3, the legal moves of the gold player include: 

- Ch2n Ch3n Ch4n Ch5n1:  The Cat at h2 moves 4 steps north. 

- Me2n Me3n Me4e Mf4e:  The Camel at e2 moves 2 steps north and 2 steps east. 

- Me2n Me3w:  The Camel at e2 moves 1 step north and 1 step west. This move only 

contains 2 steps. 

- Ca2e Hd4e Dg2n Rb1n:  The Cat at a2 and the Horse at d4 move 1 step east; the 

Rabbit at b1 and the Dog at g2 move 1 step north. 

Some moves with a different order of steps lead to the same result. For example, “Mc5e 

Md5n Hb8e Ra8e” and “Hb8e Mc5e Md5n Ra8e”are identical moves. There are over 

10,000 unique legal moves in this position to choose from. 

The stronger pieces can push weaker enemy pieces out of the way and move into their 

square, or pull weaker enemy pieces along with them. For example, in Figure 1.3, the 

gold Elephant at d6 can move to e6 and push the silver e6 Camel to e5 (… me6s 

Ed6e…). The same Elephant moving to d5 and pulling the silver Camel to d6 is also 

legal (… Ed6s me6w…). Pushing or pulling takes up 2 steps, and can be done together 

in the same turn.  However a piece cannot pull while completing a push. 

When a weaker piece is beside a stronger enemy piece, it becomes frozen and cannot 

move unless there is a friendly piece beside it. For example, in Figure 1.3 the silver Camel 

at e6 is frozen (by the gold Elephant at d6). The gold Horse at d4 threatens the silver 

Dog at c4, but the latter is free to move because there is a friendly Cat at c5 providing 

support. 

The board has four distinctly marked squares at c3, c6, f3 and f6, which will be referred 

to as “traps”. Any piece that is on a trap square and does not have a friendly piece beside 

                                                 
1  The notation of Arimaa is as follows. Every step is recorded by 4 letters. The first letter indicates the piece color 
and piece type, upper case for the gold pieces and lower cases for the silver pieces. The second and third letters 
indicate the column and row of the piece’s position. The fourth letter indicates the direction which the piece moves, 
“n” for north, “e” for east, etc. For example, “Ca2e” means the gold cat at column “a” and row “2” moves 1 step east. 
Removing a trapped piece from the game is recorded by marking an “x”. For example “Hf2n Hf3x” means the gold 
horse at “f2” moves north and is trapped. Notice it still counts as one step, not two [18]. 
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that trap square will be removed from the game. For example, in Figure 1.3, the gold 

Horse at d4 can capture the silver c4 Dog by pushing it into the trap at c3 (… dc4s dc3x 

Hd4w…this still counts as 2 steps). If the silver e6 Camel is pushed into the trap at f6 by 

the gold Elephant (me6e Ed6e), it won’t be removed for there is a friendly Horse at f7 

and a friendly Dog at g6.  

All the rules are quite simple and intuitive for the human players, and make this a fun 

game to play. 

1.3 Challenge 

The main reason why this game is difficult for a computer is the large branching factor. 

Compared to an average of about 35 moves in a typical Chess position, or roughly 200 in 

a Go position, a player has to choose between 2,000 to 3,000 moves for their first move 

in Arimaa, and about 5,000 to 40,000 moves in the mid-game. If we assume an average 

of 20,000 possible moves at each turn, looking forward just 2 moves (each player taking 

2 turns) means exploring about 160 million billion positions. Even if a computer was 5 

times faster than Deep Blue and could evaluate a billion positions per second it would 

still take it more than 5 years to explore all those positions [17]. 

Another important reason why Arimaa is difficult compared to Chess is that it is a 

challenge to build a function that can assess who has the better Arimaa position. For the 

computer, spotting tactics is easier than evaluating a materially equivalent position. 

Arimaa is much more of a positional game and has much less tactics than Chess. 

Compared to the capture rule in Chess, pushing, pulling, freezing and trapping in Arimaa 

is more difficult for the computer to handle. Some of the successful heuristics used in 

games like Chess do not work well in this game [17]. 

The match that computers challenge humans has happened twice so far. Both times the 

world's best Arimaa-playing program, “bot_bomb” built by David Fotland, was beaten 
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by humans (8-0 by Omar Syed in 2004 and 7-1 by Frank Heinemann in 2005). Another 

fact indicates the huge gap between humans and computers in Arimaa playing more 

clearly: strong human players can beat the best Arimaa program with a handicap of 1 

Camel, 2 Dogs and 1 Cat, and they are still competing to win with a larger handicap. 

1.4 Thesis Outline 

In this thesis, our goal is to build a program capable of playing a strong game of Arimaa. 

We will investigate some search techniques which are often used in other strategy games 

and assess how effective they are in Arimaa. We will also investigate building an 

evaluation function for this game and assess how easy/difficult this is. 

The outline of the thesis is as follows. Chapter 2 presents background information of 

heuristic search, and takes a look at some popular search enhancements.  

Chapter 3 gives a description of the evaluation function used in our Arimaa program. We 

try to put every piece of knowledge that is proven to be essential into the evaluation 

function, and avoid calculating too much uncertain or trivial stuff.  

Chapter 4 introduces the process of move generation. We remove all repetitions and 

reversible moves. We introduce the new idea of the step combination to reduce the 

branching factor and make some forward pruning. 

In Chapter 5 we present the search enhancements used in our program, and give out the 

experimental results and their analysis. These enhancements include Transposition Table, 

Null Move, Move Ordering, History Heuristic, Iterative Deepening and Razoring. 

In Chapter 6, some interesting possible future research directions are discussed. 
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C h a p t e r  2  

 

GAME-TREE SEARCH  

Like other 2-player games, Arimaa can be represented by a large game tree, with the 

computer doing a depth–first depth-limited search over it. The idea is to start at the 

current position, generate the set of all possible successor positions, the evaluation 

function will be applied to those positions, the one with best value will be picked out, 

and its value will be backed up to the starting position. This procedure could be used 

recursively until the limiting depth (or time) to get a more accurate result [6, 11, 13]. 

Figure 2.1 illustrates this idea with a search tree for the game tic-tac-toe.  

 

 

 

                     

 

                                              

                           (  win)    

Figure 2.1: A sample game tree for the game tic-tac-toe. 
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It is well-known that searching deeper generally improves the quality of the decision 

made by the search [19]. 

To play a game, the program needs:  

1) A move generator and the ability to make and undo a move. 

2) An algorithm for efficiently traversing the tree.  

3) Knowledge of when the game is over, and what the result is (win, lose or draw). 

4) An evaluation function to assess how good the position is. 

2.1 Minimax Search 

In the game tree, all the moves represent by the nodes at odd levels belong to the current 

player (represented by squares in Figure 2.2), and all the moves represent by the nodes at 

even levels belong to the opponent player (represented by circles in Figure 2.2). The 

computer assumes both sides play their best. Certainly, the current player’s best move is 

the move with the highest evaluation. But the opponent player’s best move is the current 

player’s worst situation, which is the one with the lowest evaluation value. Thus, the 

search procedure must select the move with the maximum value at odd levels, and the 

move with the minimum value at even levels, as shown in Figure 2.2. This searching 

procedure is called Minimax [6, 11, 13]. 

 

 

 

 

 

       

3       5           -5        4 

Figure 2.2: A search tree with node values. The square nodes indicate that it is the turn of 

the maximizing player, and the circles indicate that it is the turn of the minimizing player. 

-5 

3 

3   
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int miniMax( state s, int depth, int type ) 

{ 

  if( isTermalNode(s) || depth==0 )     

 return evaluate(s); 

 

Vector succ = generateSuccessors(s);   

 

  if( type==MAX )     

  {  

    score = -INFINITE;  

    for( child=succ[0]; child!=succ.last(); child=succ.next() ) 

    { 

    value = miniMax( child, depth-1, MIN ); 

    if( value>score )    

score = value;  

}      

  }   

  else  // MIN   

  {  

    score = INFINITE;  

    for( child=succ[0]; child!=succ.last(); child=succ.next() ) 

    { 

    value = miniMax( child, depth-1, MAX ); 

    if( value<score )    

score = value;  

    }      

  }   

  return score;  

} 

Figure 2.3: The pseudo-code for the Minimax search function. 

Figure 2.3 shows the pseudo-code for the Minimax search function. If a node is terminal 

(which means the result of this node is a certain win, lose or draw), or the depth limit is 

reached, we stop searching deeper and return the result of the evaluation function. 

Otherwise we generate all the legal successors of this node, iterate through all of them, 

recursively call the Minimax function, get the maximum (for the maximizing player) or 

minimum (for the minimizing player) value as the result to return. 
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It is easy to prove that if the average branching factor of the tree is b, and search depth is 

d, then Minimax search will examine O( db ) nodes.  

2.2 Alpha-Beta Search 

A Minimax search is very time consuming. The efficiency can be greatly improved by 

recognizing that some positions in the search tree are provably irrelevant, and therefore 

can be eliminated (or “pruned”) from the search [13]. 

The idea is to maintain a search “window” composed of a pair of bounds for every node: 

the lower bound (alpha) is a lower bound on the best that the player to move can achieve 

and the upper bound (beta) is an upper bound on the best that the opponent can achieve. 

During the search, if we get an alpha value bigger than or equal to the beta value, then 

further search at this node is irrelevant.  

 

    

 

                A    4                      B     ≤2 

 

 

     C     4       D    ≥6         E    2     F 

 

 

   4       -10     6    beta cutoff 2      -7 

Figure 2.4: Alpha-Beta cutoffs. 

Consider the example tree in Figure 2.4. After visiting node C and its sub-trees, we know 

that the value of node A must be smaller than 4 (upper bound). After first child of node 

D is examined, we see that node D is guaranteed a min value of 6 (lower bound). 6 is 

bigger than 4, the upper bound of node A. That means node D cannot be the best child 

alpha cutoff 

 

    

(

3

) 

 

  

 

 

  

 

4     
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of node A, no matter what final value it gets. Therefore the search of its other children 

can be skipped. This is called a beta cutoff.  

Similarly, node E sets node B’s upper bound to 2. Comparing node B to node A (whose 

value is 4), node B cannot have a higher value, so searching node F and its sub-tree can 

be saved. This is called an alpha cutoff. 

int alphaBeta( state s, int depth, int alpha, int beta ) 

{ 

  if( isTermalNode(s) || depth==0 )  

 return evaluate(s); 

 

  Vector succ = generateSuccessors(s);   

 

score = -INFINITE;  

  for( child=succ[0]; child!=succ.last(); child=succ.next() ) 

  { 

value = -alphaBeta( child, depth-1, -beta, -alpha ); 

if( value>score )  

  score = value; 

if( score>alpha ) 

alpha = score; 

if( alpha>=beta ) 

 break;  

  } 

  return score;  

} 

Figure 2.5: Pseudo-code for the Alpha-Beta search function. 

Figure 2.5 shows the pseudo-code for the Alpha-Beta search function. It is given in the 

so-called NegaMax formulation. The idea is that if we swap alpha and beta and negate 

them as well as the return value, we can treat the Min nodes identically to the Max nodes 

instead of alternating Max nodes and Min nodes. 

The effect of Alpha-Beta search is that in the best case, the number of nodes examined 

can be reduced to roughly O( 2/db ) without changing the search result. This so-called 

best case of Alpha-Beta search happens when every first child of a node causes a cutoff 
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(if one is possible). Hence it is essential that the search program invest resources to order 

node successors from most to least likely to make the cutoffs happen as soon as possible. 

In the worst case the Alpha-Beta search could equal the Minimax search, with no cutoffs 

at all. 

2.3 Transposition Table 

In a huge game tree, the same game position may be reached by different paths, and each 

path has a different node for it. Searching nodes that represent the same situation 

multiple times is redundant. 

Keeping a record of the previous search results can eliminate this kind of overhead.  

Having this data allows us to do a lookup before exploring a node, to see if it has been 

visited before, and decide if further search is necessary. The most popular way of saving 

the data is using a hash table, because it is fast to access and easy to implement [12]. This 

is often called a transposition table. 

Even if the transposition table information is insufficient to cause a cutoff, it can still be 

beneficial. Useful information can be saved to narrow down the search window or 

improve the move ordering. Usually, the information includes search bounds, the best 

successor, the search depth and the search result.  

Zobrist‘s method is a well-used encoding method to generate the index hash key for the 

transposition table [22]. It is very fast, only taking several bit operations. The basic idea is 

to give every possible piece and square combination a unique random code. Producing a 

hash key for a position is easily done by doing exclusive-or (xor) operations on those 

codes of the combinations that occur in that position.  
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int alphaBeta( state s, int alpha, int beta, int depth ) 

{ 

 if( isTerminal(s) || depth==0 ) 

   return evaluate(s); 

 

 ptr = lookupTT(s); 

 if( ptr!=NULL && ptr->depth>=depth )   

 { 

   if( ptr->bound==LOWER) 

  alpha = MAX( alpha, ptr->value ); 

   if( ptr->bound==UPPER) 

  beta = MIN( beta, ptr->value ); 

   if( ptr->bound==ACCURATE ) 

  alpha = beta = ptr->value; 

   if( alpha>=beta ) 

  return ptr->value; 

} 

 

… …    

// generate and traverse the successors of the node and get a value 

 

 if( value<=alpha ) 

   bound = UPPER; 

 else if ( value>=beta ) 

   bound = LOWER; 

 else   

   bound = ACCURATE; 

 saveTT ( s, value, bound, depth ); 

 return value; 

} 

 

Figure 2.6: Pseudo-code of the Alpha-Beta search function with a transposition table.  

Figure 2.6 shows pseudo-code of the Alpha-Beta search function with a transposition 

table. Note that the transportation table only helps when the search result stored in it has 

a search depth that is no less than the current search depth. The search window might be 

narrowed, even if no cutoff occurs. 

Since collisions are unavoidable with a hash table, the hash key should be at least 64-bits. 

Replacement of table entries should also be taken into consideration [2].   
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2.4 Move Ordering  

The earlier an Alpha-Beta cutoff happens at a node, the smaller the tree that is built. 

Ordering the nodes, making plausible ones be searched sooner, increases the chance that 

a good move will be found early and cause a cutoff. 

If the node being explored has an entry in the transposition table and the transposition 

table information does not cause a cutoff, the best successor from the previous time this 

position was searched is a good candidate for being the best, and thus should be search 

first. If this move is not applicable or fails, some popular methods can provide other 

plausible candidates.  

The Killer Move is a popular method that is effective in many games. The idea of this 

method is that a good move in one branch of the tree is also good at another branch at 

the same depth. At each ply a number (usually 2) of moves that cause cutoffs are 

stored and tried first before other moves are searched. There moves are called killer 

moves. There should be a scheme to replace the killer moves with the non-killer 

moves that newly cause a cutoff. Using Killer Move does not need knowledge of the 

specific domain 

The History Heuristic [14] is another popular application-independent move ordering 

method. It is based on an assumption: If a move has a history of being best (highest 

score or cause a cutoff) in a state, it is likely this move is also good for a similar state. 

History Heuristic is implemented by maintaining a history score table of all possible steps. 

Every time after searching an internal state, add a value (this value should reflect the 

search depth, a recommended equation is depth2 ) to the history score of its best 

successor step. This history score is used to re-sort moves. 

Although the Killer Move and History Heuristic are very powerful, sometimes building 

an application-dependent sorting function will be a better choice in improving move 

ordering. 
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Reordering all the successors at a node is not always worthwhile, because sorting is 

time-consuming. It is highly application-dependent, useful in Chess (about 40 moves in a 

position), but not in Arimaa (many thousand moves in a position).  

2.5 Null Move 

The idea of the Null Move is assume there is always something to do than nothing. If a 

position before a move is found already good enough for the player to move, a move by 

the same player after this position will only make its result better. Therefore further 

search over this position is unnecessary and can be skipped. 

Whether a position is “good enough” is tested by doing a null move (doing no move at 

all) and then searching with reduced (1 or even more) depth. If the result of this shallow 

search is higher than the beta value, which means this position is so good that the player 

to move can afford passing a move and still be all right, then further search is skipped. 

By replacing a normal search with a shallower search, some search time cost is saved. If 

the result of the reduced-depth search is lower than beta value, we do a normal search. 

Null moves can be recursive, but 2 null moves in a row are forbidden. 

2.6 Iterative Deepening 

We can do a shallow search first and use the result to do a deeper search, and iterate this 

procedure until time runs out or a limiting depth is reached. This method is called 

Iterative Deepening, see Figure 2.7. At first this idea was introduced for providing a time 

control mechanism for real-time matches, but researchers found that it is also a way to 

save searching time as well.  

The time spent on shallow searches looks like a waste, but in fact it is not. The shallow 

search could be used to re-sort all possible moves of the root. Furthermore, it also fills 
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the transposition table with valuable data, and thus helps to increase cutoffs and improve 

move ordering. 

for( depth=INIT_DEPTH; ; depth+=DEPTH_STEP ) 

{ 

val = alphaBeta( depth, -INFINITY, INFINITY ); 

if( timeout() || depth==MAX_DEPTH) 

break; 

} 

Figure 2.7: Pseudo-code for iterative deepening. 

2.7 Conclusion 

Many game-playing programs use Alpha-Beta search to efficiently traverse the game-tree. 

Extensive research into Alpha-Beta has been done for over 40 years. Programs can 

search very efficiently in games like Chess, Checkers and Othello, coming close to the 

Alpha-Beta best-case search tree [12]. 
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C h a p t e r  3  

 

EVALUATION FUNCTION 

An evaluation function is used to measure how good a position is. Without an estimation 

of the desirability of positions reached we cannot select out the best move. A successful 

evaluation function should be strongly correlated with winning or losing, and be fast to 

compute [4].  

The evaluation function is important in every game-playing program. In the game of 

Arimaa, the role it plays is even more significant. Because of the large branching factor, 

all Arimaa programs cannot search very deep (normally they cannot finish a 3-move 

search in a reasonable amount of time). To search 1 ply deeper requires the program to 

be several hundreds of times faster, which is very difficult to achieve. Therefore, putting 

more knowledge into the evaluation function and building a better evaluation function is 

a sound way to improve the program. 

We try to put every piece of knowledge that is proven to be essential into the evaluation 

function, and avoid calculating too much uncertain or trivial stuff. From the view of 

implementation, we mainly adopt two ways to make the function fast: calculating the 

score incrementally and using pre-computed tables as much as possible. Our approach is 

to keep the old score of the board and only incrementally adjust the score by updating it 

at each step. This is much faster than calculating the score from scratch for every move. 

The evaluation function consists of several terms: 

1) Material Value 
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2) Piece-Position Value 

3) Frozen-Position Value 

4) Elephant Blockade Evaluation 

5) Trap Evaluation 

6) Goal Evaluation 

7) Fork Evaluation 

8) Pin Evaluation 

9) Hostage Evaluation 

Each of them is discussed in turn. 

3.1 Material Value 

The material balance is almost always the most important part for many games. Table 3.1 

shows the material values of all the pieces in Arimaa. These values are adopted from 

David Fotland program [8]. The value of a Rabbit changes based on how many Rabbits 

have been lost. The last one is 12 times as valuable as the first one, since if it is lost then 

the player cannot win the game. 

Rabbits 100,  150,  200,  250,  300,  400,  500,  1200 

Cat 250 

Dog 300 

Horse 600 

Camel  1100 

Elephant 1800 

Table 3.1: Material values. 

Theoretically, all material values in Arimaa should be relative. If a player has an 

advantage in material, then exchanging pieces of equivalent strength is beneficial to this 
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player, because it makes the situation simpler and the advantage more difficult to be 

reversed. Therefore, slightly increasing the values of all the pieces that belong to a player 

every time he loses a piece seems a reasonable way to make the evaluation function work 

better. But in practice, dynamic material values make the system much more complicated. 

It is very difficult to assess whether this difference is worthwhile. 

At the beginning of a game, most players will be happy to trade two Cats and a Dog for a 

valuable Camel. But this trade may not be a good deal at the end of the game, when there 

are not many pieces left. After many pieces have been exchanged, the number of pieces 

becomes more and more important, even though the pieces might be over-ranked. To 

reflect this tendency, some people suggest beside piece values, we should also assign 

another value corresponding to the number of pieces belongs to the same side left on the 

board. It is an interesting and reasonable thought, but we didn’t try it in our program. 

3.2 Piece-Position and Frozen-Position Tables 

In our program, every piece rank and position combination is assigned a value to 

encourage pieces to move to favorable positions. For each piece rank, the position values 

are horizontally symmetrical. Vertically reversing the position values for a gold piece 

gives the values for the equivalent silver piece, since their goals are vertically reversed. 

Compared to the material values, the position values are very small. In other words, 

material dominates the evaluation. Two positions that are materially equivalent can be 

differentiated by their position values. 

Elephants are invulnerable in the game of Arimaa, so letting them control the center 

region is rewarding. For them, the value of a square is mainly dependent on the distance 

to the center of the board. 

Cats and Dogs are weak pieces. Moving them into the enemy’s territory is unlikely to be 

a good choice. In a real game, most of the time their role is to guard the traps on their 
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side of the board. Therefore the squares adjacent to their traps have encouraging values, 

and advanced squares are set to negative values.  

The Camels and Horses are strong pieces, but not invulnerable. They should go to the 

enemy zone to attack, but at the same time avoid being trapped or framed. The position 

values set for them are a combination of the Elephants and weak pieces.  

Every square has two values for a Rabbit. The Rabbits are the weakest pieces and cannot 

move backwards; moving them forward is dangerous at the beginning of the game. Thus 

the “normal” value of a square at the advanced ranks is set to negative to discourage the 

Rabbits from advancing. We also assigned a “motivate” value for every square, which 

will be used to encourage the Rabbit to strive for a win, whenever we find that the enemy 

is too weak to guard their territory. In both cases the values for the side files are assigned 

a little higher score than the center files, because the latter is more dangerous for being 

trapped and more difficult to reach a goal. 

For all pieces, the four trap squares are given negative values. Even if a trapped piece has 

an adjacent friendly piece, occupying a trap square is still a potentially dangerous 

situation.  

Similarly, we assign a value for every piece rank and position combination for the frozen 

pieces. Being frozen is always bad, the possible moves are restricted and potential paths 

are blocked. A strong player is always attempting to freeze as many opponent’s pieces as 

possible. Having a single piece freeze two or more opponent’s pieces can be very 

advantageous. 

How bad a freezing will be depends on the piece rank and its position. Being frozen, a 

strong piece is worse than a weak piece, and staying at the back ranks are not as bad as 

being close to an enemy trap. 

The piece-position and frozen-position tables are given in Appendix. Note these values 

have been manually set. There are learning methods than can help determine good sets 
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of values (e.g. temporal different learning [16]), but attempts to do this have been 

unsuccessful (see later discussion). 

3.3 Elephant Blockade 

The motility of Elephants is very important in Arimaa. In Figure 3.1, the silver player has 

just blockaded the gold Elephant so that it has no legal moves. There is no empty square 

for the gold Elephant to step into, and no empty square into which it can push the silver 

pieces. This is a very bad situation for the gold player [10]. 

A novice Arimaa player will think that since nine silver pieces are required to maintain 

the blockade, including the silver Elephant and Camel, this blockade is more costly to the 

silver player than to gold. But that is not true. In making a blockade, a weak piece serves 

as well as a strong one; therefore silver player can easily free his strong pieces by 

replacing them with weak pieces, and get the upper hand. 

 

Figure 3.1: Elephant blockade. 
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In our program, to measure the Elephant blockade situation, we check every adjacent 

square of the current positions of an Elephant to get the following information: 

1) Does this direction face the center of the board or an edge? 

2) Is this square empty? 

3) How many squares adjacent of this square are occupied? 

The information for both sides results in a pair of 6-scale estimate values, which will be 

added into the evaluation score. The table of these values is given in Appendix. 

3.4 Trap and Goal Evaluation 

Like many other games, the loss and gain of material in Arimaa is the dominant indicator 

of who is losing and who is winning. Therefore, investing some time in calculating the 

future material balance is worthwhile. For every position at level 4n+m (0≤m<4), we 

calculate the possibility that any enemy piece can be trapped in the next 4-m steps, and 

subtract the material value of the most valuable piece that can be trapped from the 

evaluation score. Therefore, search step 4n+m (0≤m<4) will give us a roughly 4n+4 step 

result. 

 

Figure 3.2: All trappable squares. The number indicates the distance from a square to a 

trap. Some squares have 2 numbers because they are close to 2 traps. 
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To trap an enemy’s piece, the player needs to pull or push it onto a trap square, and force 

its supporting piece to leave the squares adjacent to the trap. For the pieces that belong 

to the opponent of the player to move, the possibility of being trapped exists only if the 

distance from their position to any trap square is equal to or less than two steps. See 

Figure 3.2. Among all 64 squares on the board, 44 of them are at most two steps from a 

trap. A piece at c4, c5, f4, f5, d3, e3, d6 or f6 can be captured into two different traps. 

For these squares, the threats from both sides need to be calculated.  

During the process of trapping an enemy’s piece, sacrificing a friendly piece may be 

unavoidable. In this case, the evaluation depends on the comparison of the values of the 

lost piece and the gained piece. 

For every position at level 4n+m (0≤m<4), we check the possibility that any Rabbit of 

the player to move can achieve the goal in the next 4-m steps, and if so score the 

situation as infinite (win) or minus infinite (lost). It can discover an unavoidable win 

or loss situation up to 4 steps earlier, saving further search and greatly improving the 

performance of the endgame play.  

Figure 3.3: Goal paths for a gold Rabbit (up to 4 steps). 
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Only the Rabbits that belong to the player to move need to be checked. We classify the 

goal situation of a Rabbit by how far it is from the goal rank. Figure 3.3 shows all 

possible goal paths for a gold Rabbit.  

The difficulty in finding out the situation of trapping or reaching the goal in 4 steps is 

obvious. There are many different paths. Pulling, pushing, blocking, freezing and 

supporting: all these rules make the situation very hard to handle. 

The easiest way to solve the problem is to generate all the legal moves of the next turn. 

This method is simple to implement, but not practical due to the time-consuming cost of 

move generation (see Chapter 4). To make the program fast, we have to use decision 

trees to handle all the trapping and goal situations case by case (see Figure 3.4). 

 

 

 

 

 

Yes      No 

     

Figure 3.4: A small part of the trap evaluation decision tree. To make it simple, in this 

figure we assume the step limit is always 4. There is only 1 trappable case covered in this 

figure. 

 

True 

 

False 

 

… Each supporter is adjacent to an 

unfrozen unblocked and 

over-ranked hostile piece 

False 

 

False 

 

… … 1 supporter 2 supporters >2 supporters 

Adjacent to a trap 2-steps away from a trap Other 

rap 

At a trap 

An opponent piece  
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The difficulty of implementing such a decision tree is based on the number of cases that 

have to be considered. Table 3.2 gives out the numbers of cases. As the step number 

increases, the number of cases grows dramatically. All cases need to be manually carefully 

handled, and each of them has many details that need to be taken care of, that make the 

building of decision tree a huge and hard task. However, the execution time cost of the 

decision tree is very low. It doesn’t make the search distinctly slower.  

So far our decision tree can handle all the cases that take up to 3 steps to trap or goal, but 

the 4 steps cases are not accomplished yet. 

Step Trap case Goal case 

≤1 1 1 

≤2 3 4 

≤3 10 29 

≤4 >40 >100 

Table 3.2: Number of trap evaluation and goal evaluation cases. 

Table 3.3 shows the result of trap and goal evaluation. It can make a 5-step search 

roughly equivalent to an 8-step search, which is a great improvement. It also helps to 

give Iterative Deepening a better move ordering. Implementing the cases for all 4 steps 

will make it better, but considering the difficulty involved, it is not critical.  

Search 
Roughly equivalent search 

step≤3 step≤4 

5-7 step 8 step 8 step 

8 step 11 step 12 step 

9-11 step 12 step 12 step 

12 step 15 step 16 Step 

Table 3.3: Result of trap evaluation and goal evaluation. 
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From Table 3.3, to make the best use of the searching time, apparently 4n+1 (such as 5, 9 

or 13) is the preferred search depth. 

3.5 Forks 

A “fork” means that one piece is threatened to be capture in two different opponent’s 

traps. It is a common way to get an immediate material gain. In Figure 3.5, the silver Dog 

at d3 can be captured in both the c3 and f3 traps. It is very difficult for the silver player 

to provide protection for both opponent’s traps in one move. Even if the silver player 

was fortunate enough to do so, normally there will be flaws in this constrained defensive 

position for the opponent to exploit [10]. 

 

 

Figure 3.5: A fork situation. The silver Dog at d3 can be captured in both the c3 and f3 

traps. 

In our program, we evaluate the fork situation caused by a central Elephant. If one side 

has such a situation, we add or reduce a certain value from the evaluation score based on 

the rank of the threatened piece. The appendix gives the table of values. 
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3.6 Pins 

In Figure 3.6, the gold Horse at trap c6 is surrounded on three sides by opposing pieces 

which prevent it from pushing its way off the trap square. The gold Elephant providing 

support is “pinned”, it cannot move without letting the Horse be captured immediately. 

The silver player can make his position even better by using his Horse at a5 to free his 

Elephant at c5. This is called a “pin” situation. One piece is in great danger and the 

Elephant loses its mobility. Obviously it is a very bad situation for the gold player [10]. 

 

 

Figure 3.6: A pin situation. The gold Horse at c6 is framed. The gold Elephant at d6 

cannot move without losing the Horse. 

Pin situations are not difficult to detect. In our program we evaluate them based on the 

rank of the framed piece, and modify the evaluation score accordingly. The appendix 

gives the table of values. 
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3.7 Hostages 

Figure 3.7 shows a hostage situation. The silver Camel at a3 is threatened by the gold 

Elephant at b2 and has no way to go. The silver Elephant has to stay adjacent to the trap 

at c3 to prevent the silver Camel from being captured. In the current position, it is very 

difficult for the silver player to free his Camel, and the silver Elephant has limited 

mobility. The chance of a weak hostage piece being captured or pinned is high [10]. 

 

 

 

Figure 3.7: A hostage situation. The gold Elephant at b2 takes the silver Camel at a3 as a 

hostage. The silver Elephant cannot leave the squares adjacent to the trap at c3. 

Oddly enough, taking a Camel or a weak piece hostage is always considered a big gain, 

but taking a Horse hostage is considered a loss. A Horse being frozen is not a serious 

problem, and the Horse hostage situation hurts the mobility of the “kidnapping” 

Elephant much more than the “supporting” Elephant. In playing Arimaa, the human 

players voluntarily offer one of their Horses to the opponents as a hostage so often that 

this tactic has been dubbed the “E-H” attack. 

In our program, we evaluate hostage situation based on the rank of the hostage piece and 

modify the evaluation score accordingly. The appendix gives the table of values. 
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3.8 Example 

We will use the situation shown in Figure 3.10 as an example to present our evaluation 

function. The evaluation score is always from the gold player’s point of view, which 

means a positive value means gold is the favored side. 

 

Figure 3.8: An example for evaluation. 

In the board shown in Figure 3.8, the gold side has 1 Elephant, 1 Horse, 1 Dog and 1 

Rabbit left. The material score is 3700 (1800+600+300+1200). The silver side has 1 

Elephant, 1 Camel and 2 Rabbits. The material score is 4600 (1800+1100+1200+500). 

So the material balance is -900 (3700-4600). 

The position scores of the gold pieces are: 12 (Elephant), 1 (Horse), -6 (Dog), 25 

(Rabbit), for a total 32. The position scores for the silver pieces are: 10 (Elephant), 3 

(Camel), 2 (Rabbit at e6), 14(Rabbit at d4), for a total of 29. So the position balance is 3 

(32-29). 

The gold Rabbit is frozen, the score of that is -1. Two silver Rabbits are also frozen, the 

scores are 0 (Rabbit at e6) and -1 (Rabbit at d4). So the frozen balance is 0 (-1-(-1)). 
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There is no Fork, Frame, or Pin situation for either side in the current position. 

The trap evaluation is based on which side is to play. If the gold side plays, the most 

valuable trappable silver piece is a Rabbit (re6e rf6x E5en), and the value is 500. If the 

silver side plays, it can capture the gold Rabbit (Rc7s Rc6x md7w), the gold Dog (De4e 

ef4e Df4s Df3x eg4w), and gold Horse (ef4n ef5n ef6s Hf7s Hf6x). The values are 600, 

300 and 1200 (notice the last Rabbit is more valuable than a Horse or a Camel). 1200 is 

the biggest value. 

If it is the gold side’s move, the gold Rabbit can get a victory in the next turn (Ee5w 

Ed5w Ec5n Rc7n Ec6x, assume the 4-step goal evaluation is implemented). The silver 

side cannot win the game in a turn. 

Now we have all scores for the evaluation. If the next turn belongs to the gold player, the 

final score is: -900 (material balance) + 3 (position balance) – 0 (frozen balance) + 500 

(trap evaluation) + infinite (goal evaluation). The result is infinite, a certain win. If the 

next turn belongs to the silver player, the final score is: -900 (material balance) + 3 

(position balance) + 0 (frozen balance) - 1200 (trap evaluation) + 0 (goal evaluation), the 

result is -2097, which means the silver player has a big advantage. 

3.9 Temporal Difference Learning 

There are hundreds of constants present in our evaluation function. If we consider that 

each one is linked to a feature of the evaluation function, then the constant value is the 

weight of that feature. So far, all of these weights have been manually set based on 

experience. 

Obviously, letting the computer set these values by itself should be a better way, which is 

what Reinforcement Learning tries to do. The most popular approach in Reinforcement 

Learning is using temporal difference learning (TD(λ ) ) [16]. The idea is to let the 

computer play thousands of games against itself. At every move for every feature, if the 
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number measuring that feature is changed, the computer will adjust the weight value of 

this feature based on the difference of the evaluation of the board situation. For each 

feature, the formula for the weight change is as follows: 

 

In this formula, tt ww 1 is the change of the weight of the feature between move t+1 

and move t, and tt YY 1  is the difference of the evaluation values between move t+1 

and move t.  is a constant between 0 and 1 called the “learning rate”, and λ  is another 

constant between 0 and 1 called the “feedback coefficient”. kwY  is the gradient of the 

evaluation value with respect to weights. 

Theoretically, there is no reason that TD(λ ) cannot work with Arimaa. We tried it but 

unfortunately failed to get a promising result. The program was set to search 5-step every 

move, and we let it play over 2000 games against itself. The result of updated weights is 

not reasonable. The reason probably is one or more of follows: 

1) There are some bugs we have not found. 

2) There are too many features to learn (several hundreds) and we did not run the 

program long enough. 

3) The search is too shallow. Experience shows that the TD learning should be done 

using search depths similar to the game search depths, which is at least 9-step in our 

case. But currently TD training using 9-step search is not practical, because it takes 

too long [16]. 

Though we cannot figure out what is wrong, we still believe that TD(λ ) is suitable in 

Arimaa. More research is needed in this area. 
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3.10 Conclusion 

The large branching factor of Arimaa prevents us from searching deep. So far no 

computer program can break the wall of a 3-move fixed depth search. Therefore, our 

program, as many other Arimaa-playing programs, puts more effort into making a better 

evaluation function. 

As more knowledge is added to the evaluation function, the search becomes distinctly 

slower. Research shows that this is not caused by the evaluation function itself becoming 

slower; it is because the new knowledge changes the principle variation more dramatically 

between different levels, and may causes the moves to be considered in a worse order. 

Because of the combination of a step-based search and the forward trap/goal evaluation, 

we found an 11-step search is not distinctly better than a 9-step one. Since we are far 

from reaching searching 13-step, 9-step is the favorite practical search depth. Experience 

shows in a 3 minute per move game, having more knowledge in the evaluation function 

and a slower search normally is better than having a slim evaluation function and 

searching 1 or even more step deeper. 

There are still so many things unknown in building a good evaluation function for 

Arimaa. More research is needed. 



 

 33 

C h a p t e r  4  

 

SELECTIVE MOVE GENERATION 

Generating moves correctly and fast is very important for any game program. It is even 

more important for the game of Arimaa. In our program, on average it costs about 30% 

to 40% of the execution time. 

For any game, normally the computer generates all legal moves available for the player to 

move for searching at each turn. We call it turn-based approach. Arimaa is a game in 

which every move contains multiple steps. Therefore moves belonging to the same turn 

but in different steps can be generated and searched separately. We call it step-based 

approach. We will compare these two approaches, and illustrate why the latter is a much 

better choice. 

For Arimaa, many legal moves with different step sequences lead to an identical state. 

These repetitions cost space and time, and don’t help in improving the search result. 

They should be removed as soon as possible. This is a very important task that should be 

part of the move generation process.  

Removing the moves that unlike is a good candidate before search is called forward 

pruning. It reduces the branching factor and makes the search tree smaller. We try to do 

some forward pruning in move generation to make the search faster without sacrificing 

much in precision.  
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4.1 Step-based VS. Turn-based 

 

     
(a) turn-based tree     (b) step-based tree 

Figure 4.1: Comparison of turn-based search tree and step-based search tree. 

In searching the game tree, normally for each position the computer generates all legal 

moves available. This process can be called turn-based move generation, see Figure 4.1 

(a). In Arimaa, the generation and search of a node in the same turn can be broken down 

to 4 steps. Each time the program only generates and searches one step of a move; see 

Figure 4.1 (b). This idea was first introduced in David Fotland’s Arimaa program [8]. It 

changes Arimaa into an unusual game with a branching factor less than 50, but the side 

to move changes every four ply. 

 

        (a) turn-based           (b) step-based (in the best case) 

Figure 4.2: The mini-tree generated for one node. 
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The benefits of step-based move generation are: 

1) In turn-based search, the program generates all successors of a node, even though 

Alpha-Beta cutoffs will prune most of them. In step-based search, the move generation 

is broken down to each step. Thus only a small part of the mini-tree of a node is 

generated due to Alpha-Beta pruning, see Figure 4.2. 

2) Search of the last turn is depth-first in the turn-based search tree and breadth-first in 

the step-based search tree. The grey regions in Figure 4.1 show this difference. In Figure 

4.1(a), the turn-based approach completed a 2-turn (8-step) search and begin search turn 

3; its result is close to an 8-step search. In Figure 4.1(b), the step-based search completed 

an 11-step search and goes to step 12. Even though the number of searched nodes is the 

same, the result can be an 8-step search compare to an 11-step search. Certainly the latter 

is much more effective in improving the result. 

3) Step-based search provides more iteration for the iterative deepening and helps create 

better move ordering for the deepest search. 

The step-based search is literally hundreds of times faster than the turn-based search. In 

our test, using the Alpha-Beta search without any enhancements, the turn-based search 

can never complete a 2-turn (8-step) search in 10 minutes, but the step-based search can 

complete it in several seconds. 

4.2 Remove Repetitions  

A simple example of a repetition is having a piece randomly move one step and then 

return to its original position in the next step. It is legal, but the board doesn’t change at 

all. 
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Figure 4.3: Repetitions. 

In Figure 4.3, we can find more examples of repetitions:  

- Ch2n Ch3n Ch4n Ch5n, Ch3n Ch2n Ch4n Ch5n, Ch3n Ch4n Ch2n Ch5n … 

- Me2n Me3w, Me2w Md2n, Me2w Md2w Mc2n Mc3e… 

The portion of unique moves out of all legal moves is about 7%; over 90% of the legal 

moves are repetitious and should be removed. 

In removing repetitions, certain rules must be followed to get a correct result: 

1) Among a group of identical moves, the one that covers all successor moves that this 

state may lead to must be the move with the smallest number of steps. Therefore this 

move must be kept, and other moves can be removed. For example, if a 2-step move and 

a 4-step move are repetitions, we keep the 2-step move and remove the 4-step move. If 

all the moves have the same number of steps, keep one of them and remove all others. 

2) The pulling moves need to be handled carefully. For example, in Figure 4.3, “Ed6s 

Ed5n” leads to a pulling move “Ed6s Ed5n cc5e”, and therefore should not be simply 

treated as identical to a null move and be removed. 
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To remove the repetitions, we use a hash table to store all the visited board states. Each 

entry of the hash table contains a number of board states, and can be accessed by the 

Zobrist’ hash value of the board state [22]. Every time the program explores a new move 

which leads to a certain state, it checks all the visited states stored in the corresponding 

entry of the hash table. If this state is found, which means it has already been visited in a 

previous move generation, the new move will be thrown away; otherwise, it will be kept 

and saved in the hash table. 

The move generation hash table is like a transportation table without a replacement 

scheme. Each entry of the hash table is set to contain a certain number of board states.  

This number should make sure that there won’t be any overflows (or at least the 

overflows are very few) and at the same time the size of the table is not too big. After 

some testing, we set this number to 8 and the total number of entries to 2 millions. 

Move# 2:0 2:2 3:1 3:3 4:0 4:1 4:2 4:3 4:4 

12g 8 216 227 3608 6 2 3609 1 36610 

17s 23 374 601 6980 12 0 8156 1 76635 

22g 14 169 261 2437 5 3 2846 3 22371 

Table 4.1: Repetition types. Theses 3 moves are taken from the first game in the 2005 

world Arimaa championship final, Karl Juhnke versus Frank Heinemann.  

Table 4.1 shows all the types of the repetitions and the frequency with which they occur 

in a typical Arimaa board. A move is marked by the move number and which side to play, 

for example “12g” means the move is #12 and it is the gold to play. The two numbers 

used to mark a type are step numbers. For example, 4:2 means a 4-step move is identical 

to a 2-step move. The bigger number is always put before the smaller one. 

If we generate all the successors of a node at the same time, as in a turn-based program, 

the method introduced above can detect and remove all the repetitions easily. But our 

step-based program generates the moves according to the number of their steps. Thus 

repetitions with different step numbers cannot be found. 



 

 38 

Fortunately, Table 4.1 shows us that the majority of the repetitions occur with the same 

step number (2:2, 3:3 and 4:4), and work fine with our step-based move generation. The 

cases of 4:0, 4:1 and 4:3 are so rare that ignoring them won’t create much overhead. The 

cases of 2:0 and 4:0 are easy to handle; you only need to put the original node into the 

hash table beforehand. Thus we conclude that 3:1 and 4:2 are the only cases that need to 

be taken care of. 

In our program, we directly pick out all 3:1 and 4:2 repetitions based on their step 

information. A move that contains a pair of counteracted steps may be a repetition, for 

example, “Me2n Rd1n Rd2w Me3s” in Figure 4.3 contains a pair of counteracted steps 

“Me2n Me3s” and is a repetition. But we also need to consider moves like “Me2n Hf2n 

Hf3n Me3s”, which contains the same pair of counteracted steps but is distinct. There 

are also moves like “Me2w Md2w Mc2n Mc3e” which are not distinct (identical to 

“Me2w Md2n”) but don’t contain a pair of counteracted steps. Based on the above 

research, a carefully designed subroutine in our program can accurately remove all the 3:1 

and 4:2 repetitions. The hash table will handle other cases. 

Currently, we generate all the legal steps first, detect and remove the repetitions 

afterward. Due to the big portion of the repetitions, it will be several time faster if we can 

build a move generator in such a way that it doesn’t generate the repetitious moves at all, 

and therefore we wouldn’t need a hash table to store and detect visited status. In Arimaa, 

because there are many complicated cases that caused by the pulling, pushing, trapping 

and freezing, to build such a move generator is not an easy task. More research is needed 

in this direction. 

4.3 Forward Pruning in Move Generation 

If the move generator can pick out the moves which are likely to be good candidates to 

consider, and ignore those moves with slim chances (so-called forward pruning or 

selective search), it will improve the program’s performance. It is a trade off between 

speed and veracity, and this needs be carefully balanced. 
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In Arimaa, a move is composed of up to 4 steps. About 10% of all the moves generated 

each turn contain less than 4 steps. Since it seems that the computer can always find 

something better than doing nothing with those passed steps to improve the situation, it 

looks like we can remove all those moves to reduce the branching factor. But after some 

research, we found this idea is not as reasonable as it seems. If a player takes 3 steps to 

do a task, his other pieces may all stay in safe positions, and the extra 1 step can do 

nothing but harm the situation. Therefore skipping the step is the best option. Strong 

human players often make a 3-step, 2-step or even 1-step move in a real game, especially 

in a defensive situation. We have to keep all the moves with passed steps. 

Another obvious selection strategy is that since only the moves with a high evaluation 

should be considered valuable, the move generator can eliminate all those low-valued 

moves in every step. The problem with this approach is that often a move loses some 

value in one step and gains more value in the next one. The steps cannot be simply 

considered isolated from each other; there might be some relationship between them.  

4.3.1 Step Combo 

To analyze and overcome this problem, we introduce a concept: Step Combo. A step 

combo is a sequence of steps in a move such that the order of the steps in this sequence 

cannot be changed. That is, in a step combo, step i depends on step i-1. If any 2 steps are 

swapped, we get a different board position or an illegal move. A combo may contain 1 to 

4 steps. 



 

 40 

 

Figure 4.4: Step combos. 

In Figure 4.4 we can find many kinds of step combo cases, include:  

- Pulling (like “ea4e Ma5s”) and pushing (like “Ma5n ea4n”).  

- A piece moving several steps in a row (like “Rd1n Rd2n Rd3n Rd4e”).  

- A piece go to support a frozen piece and let the latter escape (like “Ra1n Ca3e”). 

- A piece move away from a square to make room for another piece to move into (like 

“Hc2e Rc1n”). 

- A piece move adjacent to a trap to let another piece safely move into the trap without 

being taken off (like“De3w Hc2n”). 

- A single step does not have any relation with the next step or previous step (like every 

step in “Ra1n Rb1n Rd1n Re1n”). 

In contrast, a move such as “Hc2e Ra1n” is not a step combo, because altering the 

order of the two steps does not change the result. 

From the definition, it is easy to prove that to get the same result, the step order in a step 

combo cannot be changed; however, the order of the step combos can be changed 

arbitrarily. For example: the move “Eg6e mh6s Ra1n Rb1n” is built up by 3 step 

combos, “Eg6e mh6s”, “Ra1n” and “Rb1n”. The order of “Eg6e mh6s” cannot be 

reversed, but change the order of combos, and the move “Ra1n Rb1n Eg6e mh6s”, 

“Rb1n Ra1n Eg6e mh6s” and “Ra1n Eg6e mh6s Rb1n” will lead to the same result. 
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The score gained (or lost) by every move is the sum of score gains (or losses) that every 

step combo makes. Every combo has a certain score gain or loss, and does not influence 

other step-combo score contributions. Within a step combo, a step does not have a 

separate value. All the steps contained in a step combo must be considered as a whole. 

4.3.2 Step Combo in Arimaa 

 

Figure 4.5: All possible step combo combinations in Arimaa. 

Figure 4.5 shows all possible step combo combinations in the 4 steps of a move in 

Arimaa. This figure will be used throughout this section. Since the order of step combos 

doesn’t matter, case B2 is identical to case B1 (because every move in B2 has an 

equivalent move in B1), and case D2 and case D3 is identical to case D1. Therefore, we 

have 5 distinct cases: A(4), B(3+1), C(2+2), D(2+1+1) and E(1+1+1+1). The marks in 

the brackets indicate the numbers of steps in all step combos that build up this move, 

and the order of combos doesn’t matter. 

#step<4 #step=4 

(1) A(4) 

(2) A(4) 

(1+1) B(3+1) 

(3) A(4) 

(2+1) C(2+2) 

(1+1+1) D(2+1+1) 

Table 4.2: Convert the step combos that have less than 4 steps. 

A B1 C D1 B2 D2 D3 E 

Step1 

Step2 

Step3 

Step4 
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The step number in a move can be less than 4. To make it simple, we will convert them 

into 4-step combinations based on the table in Table 4.2. It does not have any impact in 

following discussion. 

 A(4) B(3+1) C(2+2) D(2+1+1) E(1+1+1+1) 

Game1 34% 33% 10% 21% 1% 

Game2 33% 29% 15% 20% 2% 

Game3 36% 24% 15% 23% 1% 

Total  34% 29% 14% 21% 2% 

Table 4.3: The moves played in real games. It is calculated based on all the positions in 

the 3 games in the 2005 world Arimaa championship final, Karl Juhnke versus Frank 

Heinemann.  

Table 4.3 shows the step combo combinations as a proportion of the moves that played 

in the real games. Table 4.4 shows the step combo combinations as a proportion of all 

the legal moves and distinct moves. The difference is dramatic. Less than 2% of the 

moves played in the real games belong to case E(1+1+1+1), but this case is 42% of all 

the legal moves and 31% of all the distinct moves.  

Apparently, exploiting this difference, treating every generated move based on the case it 

belongs to, is a promising way to improve the efficiency of move generation and 

searching. 

Move# 
Legal Moves Distinct Moves 

Total A B C D E Total A B C D E 

12g 274038 21% 20% 2% 25% 32% 20589 18% 12% 7% 42% 21% 

17s 631944 16% 17% 1% 23% 43% 23305 16% 10% 4% 40% 30% 

22g 172921 23% 21% 2% 27% 27% 13808 23% 16% 7% 39% 15% 

27s 551326 15% 16% 1% 29% 48% 30680 17% 10% 2% 34% 37% 

32g 170734 22% 20% 2% 26% 30% 12761 21% 16% 6% 39% 18% 

37s 926523 13% 14% 1% 20% 52% 48813 14% 8% 2% 35% 42% 

Sum 2727486 16% 17% 1% 24% 42% 149956 17% 11% 4% 37% 31% 

Table 4.4: Proportion of step combo combinations. It is the first game in the 2005 world 

Arimaa championship final, Karl Juhnke versus Frank Heinemann, 3 moves are taken 

from each side at different stages of the game. 
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4.3.3 Move Generation with Step Combo 

 

Step1    (1) 

 

 

Step2      (2)              (1+1) 

  

 

Step3            (3)              (2+1)          (1+1+1) 

 

 

Step 4 A(4)        B(3+1)   C(2+2)     D(2+1+1)        E(1+1+1+1) 

Figure 4.6: Step combos in the move generation. The thin lines will be pruned. 

Figure 4.6 shows all the step combo combination possibilities in each step of the move 

generation process. The move nodes are generated step by step, and the situation in each 

step is different. At step 1, the move generator does not have enough information to tell 

whether a step combo has been accomplished or not and therefore cannot eliminate any 

moves. 

 

         X         Y 

Figure 4.7: After generate step 2. 

Figure 4.7 shows the situation after two steps have been generated. There are two kinds 

of possibilities. In case X, the first 2 steps belong to a step combo and the moves must 

belong to A(4), B1(3+1), C1(2+1) or D1(2+1+1) in Figure 4.5, and should be kept for 

further generation.  

Step1 

Step2 
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In case Y, step 1 and step 2 are not in a same step combo. The moves built up by this 

kind of two steps must belong to cases B2(1+3), D2(1+2+1), D3(1+1+2) or E(1+1+1+1) 

in Figure 4.5. From the discussion above, we know that any moves belonging to cases 

B2(1+3), D2(1+2+1) and D3(1+1+2) must have some equivalent moves with the form 

of cases B1(3+1) and D1(2+1+1). Since moves in cases B1 and D1 are kept, the moves in 

cases B2, D2 and D3 can be removed without any risk. 

Case E(1+1+1+1) is different for it does not have an equivalent expression covered by 

any other case. Consider the characteristic of this case, in which 4 steps are totally 

separated in a move. The chance of a critical situation in which a move in case E is the 

only savior is extremely rare. Ignoring this case is a wise choice. The data in the Table 4.3 

proves this point as well. 

Thus at a very early stage we eliminate all nodes in case Y in Figure 4.7, which is the 

majority of cases in 2-step nodes. The only possibility of eliminating a good move exists 

is case E(1+1+1+1). The loss of a few moves, comparing to the huge saving, is an 

acceptable risk. 

 

X       Y 

Figure 4.8: After generate step 3. 

Figure 4.8 shows the situation after three steps have been generated. All nodes in case X 

cover cases A(4) and B(3+1) in Figure 4.5, and undoubtedly should be kept for further 

generation. 

Step1 

Step2 

Step3 
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Case Y leads to case C(2+2) and D(2+1+1) in Figure 4.5. Although a more aggressive 

pruning approach is a possible option, based on the data in Table 4.3 and 4.4 (the 

proportions of C and D in the moves of real games are 14% and 21%, their proportions 

in the distinct moves are 4% and 37%) and the result of some testing, we conclude that 

keeping all moves is worthwhile.  

At step 4, all the promising moves are generated. 

Move# 
Legal move Distinct move 

Before After Save Before After Save 

12g 274038 44887 84% 20589 12635 39% 

17s 631944 79090 87% 23305 19158 18% 

22g 172921 32108 81% 13808 9240 33% 

27s 551326 58486 89% 30680 13858 55% 

32s 170734 30077 82% 12761 8025 37% 

37g 926523 89117 90% 48813 16869 65% 

Total 2727486 333765 88% 149956 79785 47% 

Table 4.5: Result of the pruning (4-step search). It is the first game in the 2005 world 

Arimaa championship final, Karl Juhnke versus Frank Heinemann.  

Table 4.5 compares the number of moves generated with and without selective move 

generation. In a typical situation of Arimaa, the selective move generator prunes about 

30-50% of the distinct moves. Furthermore, it reduces over 85% of the redundant legal 

move, saves the majority of looking up and comparing time, and makes the move 

generation itself much faster.  

About 2% of the moves played in the real games were overlooked by the selective move 

generation, all of them belong to case E(1+1+1+1) in Figure 4.5. The mismatch rate 

alone does not reflect the result very well; to evaluating the result accurately we should 

assess the possible consequences as well (although both will be counted as a mismatch, 

missing a move that can trap an enemy piece is obviously not equal to missing an idle 

move), and review the difference between the overlooked move and the best generated 

move.  
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Theoretically, overlooking a move in case E should not create a big problem. We 

carefully studied all 5 overlooked E moves that played in the real games, and concluded 

that none of them was critical. According to our evaluation function, the substituted 

moves provided by our move generator are as good or even better. 

4.4 Remove Reversible Moves  

 

Figure 4.9: Reversible moves. 

Figure 4.9 is the first game in the 2005 Arimaa Challenge, computer champion 

bot_bomb versus Frank Heinemann. The game proceeded as follows: 

 14g  Ec4s Ec3n hb3e Db2n   14s  Db3s hc3w me6e mf6e 

 15g  Ec4s Ec3n hb3e Db2n   15s  Db3s hc3w hb3e hc6d 

 16g  Ec4s Ec3n hb3e Db2n   16s  Db3s hc3w hb6w db5n 

 17g  Ec4s Ec3n hb3e Db2n  …… 

At each turn, the computer (gold side) repeated a 4-step move, and the opponent moved 

back to the original position in 2 steps and got 2 extra steps to improve his situation. 

This is a serious pitfall in all Arimaa programs which is frequently exploited by human 

players [17]. 
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If the search ends with the opponent to move, it will discover that there is no forward 

progress and probably not make a reversible move. The problem is that currently most 

Arimaa programs can only search 12 steps or shallower, so they must evaluate the 

position without giving the opponent a chance to move away.  

We implemented a rule in the move generation to remove all the reversible moves. 

Assume in a situation that the current player can get state A1 in at least x1 steps and get 

state A2 in at least x2 steps. If the opponent can convert A2 into A1 in y steps, and 

x2-x1>y, then the moves that lead to state A2 are considered reversible and will be 

removed.  

The most important reversible moves are 3:1 (a 3-step move can be reversed in 1 step, 

the player to move may have an extra step, and the opponent may get 3) and 4:2 (a 4-step 

move can be reversed in 2 steps; the opponent may get 2 extra steps). We remove all of 

them in move generation. Unfortunately, in some very rare situations, a 3:1 reverse move 

may be a reasonable choice and should be kept in the search tree, and that will cause an 

oversight by our program.  

The 4:4 and 3:3 moves are also reversible. In these cases the opponent won’t get any 

advantage in reversing the board. But they may lead to an endless loop (especially when 

the program plays another program), so we simply remove these moves. Sometimes this 

means sacrificing a bit of value in position. A better design might be letting the program 

decide whether remove 4:4 and 3:3 reversible moves based on current situation. If the 

program is losing, keeping the reversible moves can be used as a defensive method, for 

an endless loop (draw) is better than a loss. Thus the responsibility of breaking the loop 

(and the sacrifice if there is any) will go to the opponent, since he is the winning side. 

Despite the risk that is involved, we believe that pruning all the reversible moves is a 

good trade off to make the computer player stronger. The frequency of the reversible 

moves is below 1%, so we don’t gain much in reducing the branching factor by removing 

them. 
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We also investigated so-called “quiescence search” as another solution for this problem: 

whenever the program detects a reversible move, it could extend the search until the 

opponent finished a move. The problem is that in Arimaa each turn has 4 steps. 

Therefore this extension must be 4 steps deep. It will cost too much and not be practical. 

4.5 Avoid the Third Time Repetition 

The rule of Arimaa prescribes that if after a turn the same board position and side to 

move is repeated three times, then the player causing this to occur the 3rd time loses the 

game. To avoid that, we keep the track of position history in our program, and remove 

the moves that lead to the 3rd time position repetition. 

4.6 Summary 

We successfully built a powerful move generator. It generates moves in a step-based way, 

removes all the repetitions and reversible moves, and makes some safe forward pruning. 

There is still huge potential in improving the move generator to make it faster and more 

powerful. The step combo is a new idea and needs further investigation. We believe it 

can provide more useful information to the search engine and make it run faster. 
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C h a p t e r  5  

 

SEARCH ENHANCEMENTS 

All search programs, when optimized for a specific search task, will use a number of 

enhancements to the normal Alpha-Beta search algorithm. There enhancements could 

include Transposition Table, Move Ordering, Iterative Deepening, and many other 

general as well as problem-specific ideas. In Arimaa, all of these enhancements need to 

be modified to suit the step-based search. 

All these enhancements result in a reduced search tree. Most of them can guarantee the 

result will be identical to the original unimproved search. For the large branching factor 

in Arimaa, which makes the game-tree grow too fast, we also investigated some “unsafe” 

methods. They enable more pruning, but their result might be different from the original 

search, because they will lose some good moves. For these methods, the trade off of 

making more cutoffs and keeping veracity needs to be carefully balanced [21].  

5.1 Step-based Alpha-Beta Search 

In the game of Arimaa, we use a step-based Alpha-Beta search for the reasons given 

in Chapter 4. Therefore, we need to modify the algorithm of Alpha-Beta search as in 

Figure 5.1. 

Comparing to the standard Alpha-Beta code in Figure 2.5, the main difference is that 

the player to move changes every 4 steps, so we accordingly exchange the alpha and 

beta values every 4 steps. There won’t be any cutoff in the first 3 steps. The pruning 

begins with the 4th step. 
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int alphaBeta( state s, int depth, int alpha, int beta ) 

{ 

if( isTermalNode(s) || depth==0 )  

 return evaluate(s); 

 

  Vector succ = generateSuccessors(s);   

 

score = -INFINITE;  

  for( child=succ[0]; child!=succ.last(); child=succ.next() ) 

  { 

if( (SET_DEPTH-depth)%4==3 ) // complete moves, SET_DEPTH is  

// current searching depth 

value = -alphaBeta( child, depth-1, -beta, -alpha ); 

else        // incomplete moves 

value = alphaBeta( child, depth-1, alpha, beta ); 

 

if( value>score )  

  score = value; 

if( score>alpha ) 

alpha = score; 

if( alpha>=beta ) 

 break;  

  } 

  return score;  

} 

Figure 5.1: Pseudo-code for the step-based Alpha-Beta search. 

5.2 Move Order Heuristic 

In the best case of Alpha-Beta search, the number of nodes to search might be reduced 

to roughly 2/db . A good move ordering heuristic is very important to make the 

Alpha-Beta search close to its best case [6, 11, 13].  

We use Iterative Deepening and sort the root moves (the 4th step) based on the result of 

the previous search. For the search of other steps, we will first try the best successor that 

was stored in the transposition table if it is available, and then 2 killer moves, and other 

moves ordered by the history heuristic function. 
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5.2.1 Iterative Deepening 

In Iterative Deepening, a shallower search can help in improving the move ordering for 

the next deeper one in two ways: 

1) Before searching to depth d+1, order the moves at the root based on the score 

returned from depth d. It is based on the following assumption: The best move in the 

shallow search is very likely still best in the deeper search. This is true in Arimaa and 

many other games. 

2) A shallow search visits many nodes in the game-tree which will be visited again in the 

deep search. The search results of these nodes are kept in the transposition table. Not 

only the result values will help to create cutoffs and narrow down the search window, 

more importantly, it also provides the best successor of the shallow search which is 

very likely a good candidate for the deeper search. 

We start the iteration from the 4th step. The search goes one step deeper each time. 

Move# 
Node Time 

-ID +ID Save -ID +ID Save 

12g 38472802 13270154 65.5% 236s 118s 50% 

17s 104899599 40836632 61.1% 883s 368s 58.3% 

22g 48433140 52550287 -8.5% 351s 365s -4% 

Table 5.1: Result of using the Iterative Deepening. It is based on a 9-step Alpha-Beta 

search, without any other enhancements. The moves are taken from the first game in the 

2005 world Arimaa championship final, Karl Juhnke versus Frank Heinemann. 

Table 5.1 shows the effect of Iterative Deepening. Typically it saves about 50% of the 

searching time and nodes. In an infrequent case, like the move “22g” where the best 

move is already at the top of the list in the original order, Iterative Deepening won’t give 

any saving.  



 

 52 

5.2.2 Killer Move 

If the best successor of the transposition table is not applicable or fails, we will try 

using the killer moves. Two killer moves are maintained at each ply, and a record of 

the numbers of cutoffs that caused by each of them is also kept. A successful cutoff 

by a non-killer move overwrites one of the killer moves which created fewer cutoffs 

for that ply. 

Like using the best successor of the transposition table, using the killer moves doesn’t 

require the program to generate all the successors of a node. The program tests if a 

killer move is a valid successor. If it is, then the move is generated and tried. We only 

generate all the successors when the best successor and killer moves fail. It makes the 

search faster. 

Move# 
Node Time 

-KM +KM Save -KM +KM Save 

12g 13270154 2268722 82.9% 118s 23s 80.6% 

17s 40836632 3613778 91.2% 368s 34s 90.8% 

22g 52550287 6578833 87.5% 365s 46s 87.4% 

Table 5.2: Result of using the Killer Move. It is based on a 9-step Alpha-Beta search with 

Iterative Deepening. The moves are taken from the first game in the 2005 world Arimaa 

championship final, Karl Juhnke versus Frank Heinemann. 

Table 5.2 shows the difference that Killer Move makes. It saves about 80% to 90% of 

the search effort, which is a very improvement. 

5.2.3 History Heuristic 

We still need some way to improve the order of the other moves in the queue, in case the 

best successor of transposition table and the killer moves are not applicable or fail to 

cause a cutoff. 
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In Arimaa, some moves obviously have a better chance to be a good candidate than 

other moves. For example: 

- A move traps an enemy piece. 

- A move contains pulling or pushing. 

- A move in step combo type A(4) or B(3+1).  

- A move freezes enemy pieces, or unfreezes friend pieces. 

- A move in which the Elephant changes its position. 

- …… 

The knowledge listed above enables us to build a game-specific move-sorting function, 

but it is complicated to implement and tune.  

In our program, we adopt a more popular method to address the move ordering problem: 

the History Heuristic [14]. This is implemented by maintaining a table for all possible 

steps (which is 2*6*64*4 in total). If a step becomes the best one in the search, the 

program will add depth2  to the history score of this step. We sort the moves based on 

this history value. 

How to sort the nodes is a problem that needs to be addressed. One way is using some 

fast sorting method to sort all of them, but if a cutoff happens early on, then the time 

spend on the sorting is wasted. A partial sorting (only order the best n moves) is another 

approach, but how to decide this n value and handle the situation if the best n moves fail 

is still annoying.  

In our program, we avoid sorting all the nodes at the same time. Instead, every time our 

sorting function only provides one best successor to the search engine, and remove it 

from the successor list. If this node fails, the sorting function will be called again to get 

the second best successor, and so on. Thus if the cutoff occurs soon, which is very likely, 

we won’t spend a lot of time in sorting. Although the sorting function itself is slow, the 

overall sorting time is reduced. 
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Move# 
Node Time 

-HH +HH Save -HH +HH Save 

12g 2268722 1853626 18.3% 23s 19s 17.4% 

17s 3613778 2740167 24.2% 34s 27s 20.6% 

22g 6578833 3189776 51.5% 46s 28s 39.1% 

Table 5.3: Result of using the History Heuristic. It is based on a 9-step Alpha-Beta search 

with Iterative Deepening and Killer Move. The moves are taken from the first game in the 

2005 world Arimaa championship final, Karl Juhnke versus Frank Heinemann. 

Table 5.3 shows the result of History Heuristic. Normally it saves about 20% to 40% 

searching nodes and time. 

5.3 Null Move 

The Null Move heuristic in our program was originally designed in this way: If the 

program was searching a complete move (on level 4n, like 4, 8, 12…), it would skip a 

whole move (4 steps) in the null move testing; if the search was at another level (4n+m, 

0<m<4, like 5, 6, 7, 9, 10…), it would skip the rest of the steps (4-m) in the same move.  

We observed that null move cut-offs could happen at any level, but it only made a big 

improvement at the 4n levels. At the other levels (4n+m, 0<m<4), the pruning nodes are 

so few that it is not worth the time spent on null move testing (see Table 5.4). Based on 

this result, in our program we only test null-moves on the 4n levels. 

 NM tried Cutoff Rate 

Level4 10934 6269 57.3% 

Level5 4570 77 1.7% 

Level6 8054 263 3.2% 

Level7 63522 54 0.1% 

Level8  660311 536303 81.2% 

Table 5.4: Null Move cutoffs at different levels. It is the 22g move of the first game in the 

2005 world Arimaa championship final, Karl Juhnke versus Frank Heinemann. 
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Move# 
Node Time 

-NM +NM Save -NM +NM Save 

12g 1853626 1828702 0% 19s 19s 0% 

17s 2740167 2334584 14.8% 27s 22s 18.5% 

22g 3189776 2425144 24% 28s 20s 28.6% 

Table 5.5: Result of using the Null Move. It is based on a 9-step Alpha-Beta search with 

Iterative Deepening, Killer Move and History Heuristic. The moves are taken from the first 

game in the 2005 world Arimaa championship final, Karl Juhnke versus Frank 

Heinemann. 

Table 5.5 shows the result of using the Null Move. Normally it saves about 20% to 30% 

in nodes and time. In some cases, such as the move “12g”, there is no any saving at all. 

We cannot explain what makes the move “12g” special. 

5.4 Transposition Table 

The transposition table in our program is a hash table that contains 202  entries. Any 

game state in our program is represented by a 96-bit number, which is created using 

Zobrist’s hashing method [22]. The last 20 bits of the Zobrist’ hash value of a state are 

used to map the index of the table entry of this state [12]. 

In each entry of the hash table, we save the search bounds, the best successor, the search 

depth, the complete Zobrist’ hash value and the search result. If a collision happens, we 

always keep the state with the deeper search depth. 

In game-playing programs, normally a transportation table can reduce the search tree size 

dramatically. Unfortunately it doesn’t help much in the game of Arimaa. The reason for 

this is that a transportation table only works well if the program searches 3 moves or 

deeper. Not many repetition states with different paths will show up if the program 

searches shallower than that. Three moves are 12 steps in Arimaa, which is too deep to 

finish in a reasonable time. Since our program normally only searches 10-11 steps in 3 

minutes, the transportation table cannot provide many cutoffs.  
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Move# 
Node Time 

-TT +TT Save -TT +TT Save 

12g 1828702 2045876 -11.9% 19s 20s -5.2% 

17s 2334584 2262193 3.2% 23s 23s 0% 

22g 2425144 2396387 1.2% 20s 20s 0% 

Table 5.6: Result of Transposition Table. It is based on a 9-step Alpha-Beta search with 

all the enhancements mentioned above. The moves are taken from the first game in the 

2005 world Arimaa championship final, Karl Juhnke versus Frank Heinemann. 

Table 5.6 shows the result of Transposition Table. Sometime it makes a small 

improvement; sometimes it makes the search a little slower. As long as we cannot search 

over 12-step deep, removing it from the program won’t show much difference. 

5.5 Razoring 

Razoring is a method that uses the static evaluation values to create cutoffs [1]. The basic 

idea of this method is based on an assumption: For any state, the player to move must 

have at least one move that can improve his position. Hence, after taking his best move 

the state should be better than before for him. This assumption is not always true for 

Chess because of the existence of zugzwang.2 This problem may exist in Arimaa as well, 

and needs more research. 

 

        

 

                B                          C 

 

 

               

     cutoff       cutoff                        cutoff 

Figure 5.2: The Alpha-Beta tree for razoring. 

 

                                                 
2 Zugzwang is a state in which every move available to the players to move creates a position worse than the present 
board position for them. In other words, “pass” is the best choice if it is applicable. 
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Consider the tree in Figure 5.2. The root node A has a static evaluation value of 5. Node 

B’s static evaluation value is 3, which is less than 5. From the assumption introduced 

above, the best successor of node A cannot be worse than node A (which means the 

value of the best successor cannot be lower than 5, since it is Max’s turn), therefore it 

cannot be node B. We can eliminate B without examining its sub-tree. For node C, which 

has a static evaluation value of 8 and is better than node A, we can use 5 as its lower 

bound to narrow down the search window. Node C’s first child returns 4, which is less 

than 5, so all its other successors can be eliminated. 

In the game of Arimaa, Razoring only works when a full move is completed, in other 

words, every 4 steps (4n). Since the program cannot complete a 3-move (12-step) search 

in a reasonable time, Razoring doesn’t enable much pruning this way. 

The concept of step combo that we introduced in Chapter 4 may help us do more. When 

a step combo is finished, since the rest of the steps of a move have nothing to do with 

the steps that already been taken, we can apply Razoring based on the static values. That 

enables us to razor nodes in the 4n+2 and 4n+3 levels (since during the move generation 

we already removed all those moves in which the first 2 steps are not contiguous; we 

cannot razor in the 4n+1 levels.).  

The problem in this method is that we have to make sure that in the pruning of the 

duplicated moves, we kept the moves with the best step-combo order. For example, 

“Ea2n Ea3n Ea4n Rb1n” is a B(3+1) move , which has an identical move “Ea2n Ea3n 

Rb1n Ea4n” in D(2+1+1) -- we have to keep the first one and remove the second. The 

order of the step-combo still makes a difference, even among the identical moves with 

the same type.  

We haven’t successfully implemented this method because it is not easy to solve the 

step-combo order problem. But we think it is an interesting thought and worth further 

investigation. 
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Unlike Alpha-Beta, Rezoring cannot guarantee finding the best decision. This algorithm 

assumes that a Max node’s static evaluation value (evaluation without search) is a lower 

bound of its dynamic evaluation value (evaluation after search its sub tree); and a Min 

node’s static evaluation value is an upper bound of its dynamic evaluation value. It is not 

a safe assumption. If the best move gets a short-term lower score but in the long-term a 

higher score, this move could be overlooked. 

It is easy to see that the severity of this “short-sight” problem in Razoring is closely 

related to the search depth. This idea was introduced in 1970’s Chess programs, when 

6-ply was considered a deep search, and has been abandoned in today’s Chess programs, 

where Deep Blue can easily search over 13-ply deep. We believe that it is a suitable 

technique for Arimaa, since in this game searching 4-ply is still a target beyond reach 

currently.  

5.6 Summary 

We implemented many enhancements into the Alpha-Beta search algorithm. But because 

the branching factor is too large in Arimaa, the program still cannot search very deep. 

So far we can only finish searching 10 or 11 steps in 3 minutes. Other top Arimaa 

programs, like the world champion bot_bomb, are at the same level. To make the 

program distinctly stronger, we need to reach searching 13-step, which is very difficult to 

do. There is a bottleneck at 12-step that prevents the Transposition Table from being 

effective. 

We believe the “Enhanced Razoring” method introduced above has potential and is 

worth some investigation. A deeper forward pruning enhancement is another interesting 

way to put effort. 

There is a serious horizon effect problem in our program, where a bad move hides an 

even worse threat because the threat is pushed beyond the search horizon. Normally 
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this problem is solved by Quiescence Search, which makes sure that evaluations are 

done at stable positions, i.e. positions where there are no direct threats. But in Arimaa, 

where every move is composed of up to 4 steps, Quiescence Search is not practical for 

it is too costly. More research is needed to address this problem. 



 

 60 

C h a p t e r  6  

 

FUTURE WORK 

Omar Syed, the designer of Arimaa was so confident in the computer’s disadvantage 

compared to humans in this game, that he offered a prize to any computer program that 

could defeat the human champion in the next 20 years [17]. From the result of the first 

two official Man vs. Machine Arimaa matches (the best Arimaa program was defeated 

8-0 and 7-1 by the human champions), it seems that there is still a long way to go before 

a computer can beat the best humans in this game. 

6.1 Evaluation 

As a deeper understanding of this new game is gained, it becomes easier for us to 

improve the evaluation function by updating the features and refining the weight values. 

The official website of Arimaa (www.arimaa.com) released the Arimaa Games Archive in 

September 2004, which means that all the games played in the Arimaa game room since 

the game was first released are available for research. It gives us the chance to run the 

program over thousands of quality matches, to analyze the difference in selecting moves 

between superior human players and our program, and improve the latter [4].  

In trap/goal evaluation, our program can only find the trap/goal situations 3 steps ahead 

so far. Making it 4 steps is doable, and it will improve the program’s play. 

There are many interesting ideas for creating an Arimaa evaluation function that were 

discussed in the Arimaa website forum [17], but were ignored in our program for various 

reasons. These ideas include Dynamic Piece Value, Basic Piece Value, Trap Control and 
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Rabbit Formation. We believe some of them may make a performance difference, and all 

of them are worth more investigation. 

We also need to do more in letting the computer study and discover the knowledge of 

this game automatically. Though we failed in making TD(λ) method tuning the weights 

of features in Arimaa, we still believe it is feasible. The result of TD(λ) is search-depth 

sensitive, which means the result obtained from shallow search games may not serve the 

deeper searching program very well [16]. Therefore, if we can make TD(λ) works with 

shallow search (less than 5-step) games, the next step is to do TD(λ) tuning by playing 

games that search deeper (over 9-step). There is a lot to do in this area. 

The endgame and opening database technique was successfully used in the Checkers 

program Chinook [5, 20]. In the game of Checkers, there are only two piece types and 

only a few pieces left in an endgame, which makes it easy to use an endgame database. 

Arimaa has different piece types and usually there are many pieces left in the endgame, 

which means it is not suitable for an endgame database. The opening setup in Arimaa is 

arbitrary, but only some of them are worth playing. We believe after some research, an 

opening book database for Arimaa can be created. 

6.2 Move Generation 

We put a lot of effort to make our program generating moves fast, but there is still 

potential for improving it. 

One task in move generation of Arimaa is removing all the repetition moves, which takes 

a big potion of the move generating time. If we can find a way that is able to 

automatically skip generating all or a big portion of repetition moves, instead of 

generating them first and testing/removing them later, it will save a lot of computing 

time. We don’t know whether this idea is doable. Even if it is, it might be very 

complicated to implement. 
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We invented the concept of step combo, and successfully pruned over 1/3 of the moves 

before search by using it. We believe with more research this idea can create a bigger 

difference. Our forward pruning is rather conservative. A more aggressive approach 

might be a feasible option. Furthermore, the step combo information can be fed into the 

search engine, helping building a better move ordering and causing more cutoffs. 

6.3 Game-Tree Pruning 

There is also potential for improving the game-tree search. So far we can only search 

about 10-step in 3 minutes. Breaking the bottleneck of searching 12-step, which prevents 

the Transposition Table from being effective, is very important. Searching 13-step will 

make the program distinctly stronger. 

Since there is a lot of knowledge available in Arimaa for distinguishing the good 

candidate moves from the slim-chanced moves, a well-designed application-specified 

move ordering method might work better than the History Heuristic. 

Razoring is a powerful method which can create many cutoffs. It is suitable for a shallow 

searching situation, as in an Arimaa-playing program. The problem that prevents it from 

being fully functional in Arimaa is that a move must be treated as a whole, which means 

Razoring can only be used every 4 steps. Step combo enables Razoring pruning at 

different steps, instead of different moves, which will make a big difference. It needs the 

moves generated in the best step combo order, which is not easy to implement. 

Consider the large branching factor in Arimaa, even getting close to the Alpha-Beta best 

case search tree is still challenging. A deep forward pruning is worth more research, to 

balance the speed and the chance of losing good moves. An Arimaa-playing program 

called bot_crueless, created by Jeff Bacher, uses deep forward pruning; it achieved 

second place at the 2005 world computer Arimaa tournament. 
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6.4 Comparison with Fortland’s Work 

David Fortland’s Arimaa program won the computer world championship in 2004 and 

2005. He wrote an article in 2004 to give a brief introduction to his work. It gave us an 

opportunity to study his methods and compare it to what we have in our program [8]. 

It seems that the move generator in Fortland program doesn’t remove repetition moves. 

Instead, the redundant nodes caused by repetitions are removed by the transposition 

table in searching. This approach is easy and simple, but we believe it costs more than 

our way. 

In move generation, Fortland program doesn’t make any forward pruning. It doesn’t 

prune any reversible moves either, although Fortland noticed this problem. 

The evaluation function in Fortland’s program has different terms, such as Rabbit 

Formation. Fortland did not use temporal difference or any other machine learning 

methods; he adjusts all the evaluation weights manually.  

In his evaluation function, there is also a trap/goal evaluating decision tree (in fact we 

got this idea from him). But he doesn’t evaluate trap/goal by completing unfinished steps 

left in the current move as we did. Instead, he statically evaluates how many steps it will 

take to trap each piece on the board (1 to 6 steps) or have each Rabbit reach the goal (1 

to 8 steps), assuming no intervening moves by the opponent. This implementation is 

much difficult than our way, and the idea behind it is not very clear. We don’t fully 

understand the benefits of this approach, and we believe that our way is more 

reasonable. 

The search enhancements used in Fortland’s program includes Transposition Table, Null 

Move, Iterative Deepening, Killer Heuristic, History Heuristic and Search Extension, 

pretty much everything we have in our search engine. However the implementation 

seems to be different. 
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The Search Extension in Fortland’s program enables a highly pruned search to find 

defenses against goal threats, which is not a part of our program. According to Fortland, 

his program usually finds 20 step goal sequences within the 3 minute time limit, when it 

only completes 10 or 11 full steps of search. 

6.5 Result 

Rank Name Author 
Play Gold Play Silver 

Win Lose Win Lose 

1 Bomb David Fortland 1 4 1 4 

2 Clueless Jeff Bacher 5 0 4 1 

3 GnoBot Toby Hudson 5 0 5 0 

4 Loc Gerhard Trippen 4 1 4 1 

Table 6.1: Play against the top 4 programs of the 2005 Computer Arimaa Championship. 

The games were played in 15 seconds per move, 2 minutes in the starting reserve.  

Our program didn’t attend 2005 Computer Arimaa Championship, so it does not have 

an official rank.  

Table 6.1 is the result of our program playing against the top 4 Arimaa-playing programs 

(15 seconds per move, 2 minutes in the starting reserve). It shows that our program still 

cannot beat David Fotland’s champion program, but is stronger than other 3 programs. 

Our program searches as fast as David Fotland’s program. We believe the reason of its 

being outplayed is mainly in the evaluation function. To beat Fortland’s program, we 

need to improve our evaluation function by carefully checking and updating the terms, 

and making TD(λ) working to tune the weights.  
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APPENDIX: EVALUATION VALUE TABLES 

8 0 1 1 2 2 1 1 0 

7 1 2 2 3 3 2 2 1 

6 2 4 -4 10 10 -4 4 2 

5 3 8 12 12 12 12 8 3 

4 3 8 10 10 10 10 8 3 

3 2 4 -4 10 10 -4 4 2 

2 1 2 2 3 3 2 2 1 

1 0 1 1 2 2 1 1 0 

 A B C D E F G H 

(a) Elephant position value. 

8 -2 -1 0 1 1 0 -1 -2 

7 -1 0 1 2 2 1 0 -1 

6 0 1 2 3 3 2 1 0 

5 1 2 3 4 4 3 2 1 

4 2 3 4 5 5 4 3 2 

3 1 2 3 4 4 3 2 1 

2 0 1 2 3 3 2 1 0 

1 -1 0 1 2 2 1 0 -1 

 A B C D E F G H 

(b) Camel position value. 

8 -2 -1 0 1 1 0 -1 -2 

7 -1 0 1 2 2 1 0 -1 

6 0 1 -5 3 3 -5 1 0 

5 1 2 3 4 4 3 2 1 

4 2 3 4 5 5 4 3 2 

3 1 4 2 3 3 2 4 1 

2 0 1 2 3 3 2 1 0 

1 -1 0 1 2 2 1 0 -1 

 A B C D E F G H 

(c) Horse position value. 
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8 -4 -6 -6 -6 -6 -6 -6 -4 

7 -7 -8 -10 -9 -9 -10 -8 -7 

6 -9 -10 -12 -11 -11 -12 -10 -9 

5 -6 -8 -9 -9 -9 -9 -8 -6 

4 -3 -5 -6 -6 -6 -6 -5 -3 

3 -1 -1 -2 -3 -3 -2 -1 -1 

2 1 2 4 2 2 4 2 1 

1 0 1 1 1 1 1 1 0 

 A B C D E F G H 

(d) Dog position value.  

8 -4 -6 -6 -6 -6 -6 -6 -4 

7 -7 -8 -10 -9 -9 -10 -8 -7 

6 -9 -10 -12 -11 -11 -12 -10 -9 

5 -6 -8 -9 -9 -9 -9 -8 -6 

4 -3 -5 -6 -6 -6 -6 -5 -3 

3 -1 -2 -2 -3 -3 -2 -2 -1 

2 1 2 4 2 2 4 2 1 

1 0 1 1 1 1 1 1 0 

 A B C D E F G H 

(e) Cat position value. 

8 INF INF INF INF INF INF INF INF 

7 -14 -16 -8 -16 -16 -8 -16 -14 

6 -16 -10 -16 -10 -10 -16 -10 -16 

5 -8 -12 -12 -12 -12 -12 -12 -8 

4 -5 -8 -8 -8 -8 -8 -8 -5 

3 -3 -5 -6 -6 -6 -6 -5 -3 

2 -1 -2 -1 -4 -4 -1 -2 -1 

1 0 0 0 0 0 0 0 0 

 A B C D E F G H 

(f) Rabbit position value (normal). 

 

 



 

 69 

8 INF INF INF INF INF INF INF INF 

7 25 25 25 25 25 25 25 25 

6 20 20 20 20 20 20 20 20 

5 16 15 14 14 14 14 15 16 

4 8 7 6 6 6 6 7 8 

3 4 3 2 2 2 2 3 4 

2 2 1 1 1 1 1 1  2 

1 0 0 0 0 0 0 0 0 

 A B C D E F G H 

(g) Rabbit position value (motivate).  

Table 1: Position value table for the gold pieces. The values for the silver pieces are 

vertically reversed. 

 

 

 

8 -20 -24 -28 -26 -26 -28 -24 -20 

7 -24 -30 -20 -32 -32 -20 -30 -24 

6 -26 -20 0 -20 -20 0 -20 -26 

5 -16 -12 -15 -10 -10 -15 -12 -16 

4 -10 -7 -7 -7 -7 -7 -7 -10 

3 -6 -2 0 -2 -2 0 -2 -6 

2 -2 -2 -2 -2 -2 -2 -2 -2 

1 -2 -2 -2 -2 -2 -2 -2 -2 

 A B C D E F G H 

(a) Camel frozen position value 

8 -20 -24 -28 -26 -26 -28 -24 -20 

7 -24 -30 -20 -32 -32 -20 -30 -24 

6 -26 -20 0 -20 -20 0 -20 -26 

5 -16 -12 -15 -10 -10 -15 -12 -16 

4 -10 -7 -7 -7 -7 -7 -7 -10 

3 -6 -2 0 -2 -2 0 -2 -6 

2 -2 -2 -2 -2 -2 -2 -2 -2 

1 -2 -2 -2 -2 -2 -2 -2 -2 

 A B C D E F G H 

(b) Horse frozen position value 
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8 -2 -2 -3 -2 -2 -3 -2 -2 

7 -3 -10 -5 -8 -8 -5 -10 -3 

6 -10 -5 0 -3 -3 0 -5 -10 

5 -3 -3 -3 -3 -3 -3 -3 -3 

4 -1 -1 -1 -1 -1 -1 -1 -1 

3 -1 -1 0 -1 -1 0 -1 -1 

2 -1 -1 -1 -1 -1 -1 -1 -1 

1 -1 -1 -1 -1 -1 -1 -1 -1 

 A B C D E F G H 

(c) Dog frozen position value 

8 -1 -1 -2 -1 -1 -2 -1 -1 

7 -2 -9 -5 -7 -7 -5 -9 -2 

6 -9 -5 0 -2 -2 0 -5 -9 

5 -2 -2 -2 -2 -2 -2 -2 -2 

4 -1 -1 -1 -1 -1 -1 -1 -1 

3 -1 -1 0 -1 -1 0 -1 -1 

2 -1 -1 -1 -1 -1 -1 -1 -1 

1 -1 -1 -1 -1 -1 -1 -1 -1 

 A B C D E F G H 

(d) Cat frozen position value 

8 0 0 0 0 0 0 0 0 

7 -1 -1 -1 -1 -1 -1 -1 -1 

6 -1 -1 0 -1 -1 0 -1 -1 

5 -1 -1 -1 -1 -1 -1 -1 -1 

4 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

 A B C D E F G H 

(e) Rabbit frozen position value 

Table 2: Frozen position value table for the gold pieces. The values for the silver 

pieces are vertically reversed. 
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Scale 0 1 2 3 4 5 

Score 0 5 10 30 50 80 

Table 3: Elephant blockade table. The scale indicates the blockade level, 0 for free 

and 5 for a full blockade.  

 

Camel 50 

Horse 40 

Dog 30 

Cat 25 

Rabbit 15 

Table 4: Fork table. 

Camel 0 

Horse 25 

Dog 20 

Cat 10 

Rabbit 15 

Table 5: Pin table. 

Camel 80 

Horse 0 

Dog 30 

Cat 20 

Rabbit 10 

Table 6: Hostage table. 
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