Modeling the Game of Arimaa with Linguistic Geometry

José Roberto Mercado Vega and Zvi Retchkiman Konigsberg

Abstract— A computer defeated a chess world champion for
the first time in 1997. This event inspired Omar Syed to develop
the game of Arimaa. He intended to make it difficult to solve
under present search approaches. Linguistic Geometry is a
technique that offers a formal method based on the expertise
of human chess masters, to make the development of complex
heuristics easier. This article introduces a Linguistic Geometry
based model for the game of Arimaa. It gives implementation
for each of the essential components of Linguistic Geometry:
trajectories, zones, translations and searches. A test case is given
and it is used as input for a software implementation of the
proposed model. The results given by the software are compared
against the analysis made by a human player.

I. INTRODUCTION

To study games, they can be represented through large
trees. These trees include every possible evolution of the
game. Searching through the game’s tree for a solution of the
game is the current approach in computer sciences. To reduce
the execution time of game search algorithms, heuristics are
used during the analysis of the game’s tree. A heuristic is an
estimation mechanism or a rule of thumb. Heuristics were
first proposed by Claude Shannon [7]. The most popular
search algorithms through general trees are depth-first, breath
first and best first, while for search in games trees are
minimax and alpha-beta [4].

Games are an interesting area of study because of their
complexity, it is believed that techniques used for solving
some games can also be used to solve other kind of problems.
In particular, the study of chess has excelled. A new game
called Arimaa was created by Omar and Aamir Syed [10].
They were inspired by the defeat of Garry Kasparov against
the supercomputer Deep Blue. The game of Arimaa is a two
player complete information, zero-sum game with no random
factors. Arimaa was released in 2002 and it was designed
to be complex to play well under traditional game search
algorithms. This was done with the purpose of fomenting
the development of new, ground breaking techniques. A
challenge was published along the rules of the game, it
consists of a prize of $10,000 USD for anyone who creates
a computer program capable of defeating a human expert in
a competition of six games.

Many computer programs have participated in the Ari-
maa challenge. The vast majority of them are based on
conventional alpha-beta search algorithms. An example of
an Arimaa design is that of David Fotland: “Building a
World Champion Arimaa Program” [2]. Fotland’s program
was champion of the Arimaa tournament in 2004, this is
a tournament only for software. Fotland’s program was
defeated by a human expert (Omar Syed).

R. Mercado and Z. Retchkiman are with Instituto Politécnico Nacional
CIC, Mexico, e-mail: dragonslayking@yahoo.co.uk, mzvi@cic.ipn.mx

978-1-4244-4815-9/09/$25.00 ©2009 IEEE

Haizhi Zhong published his master thesis in 2005 under
the title: “Building a Strong Arimaa-playing Program” [11].
Zhong’s program is based on alpha-beta reductions with
some optimizations on the evaluation function based on some
Arimaa tactics and selective generation of the movements. It
also uses a transposition table and play ordering.

In 2006 Christian-Jan Cox published his master thesis:
“Analysis and Implementation of the Game Arimaa” [1]. In
this work Cox proposes a program called Coxa. It is based
on an alpha-beta search algorithm with some optimizations
along a transposition table. Cox tests multiple variations of
the evaluation function and registers the results. None of the
variants of the heuristics represents notable improvements
over the search method.

A promising modeling technique that has its own po-
tential is Linguistic Geometry (LG). LG was created by
Boris Stilman [8], and has had a slow, though constant,
development. From its origin LG was proposed in accordance
to the way of thinking of some human chess experts. LG
was developed around a class of games called abstract board
games (ABG’s). Processing along LG is done through a
hierarchy of formal grammars. The levels of this hierarchy
are: trajectories, webs, translations and searches.

This article presents a Linguistic Geometry based model
for the game of Arimaa. The tools of LG are used to create
the model, with some variations to make them adequate for
the game of Arimaa. The model is used to implement one
of the most common tactics of the game of Arimaa. To test
the model a software implementation of the same is used and
applied in some chosen positions of the game of Arimaa. Up
to date, there is no published work which mixes Arimaa and
Linguistic Geometry.

II. ARIMAA

A. The rules of Arimaa

In order to play Arimaa, only a chess board and a set
of chess pieces are needed. However, some changes to the
rules have to be made. First off, the 64 cells of the board
are equal, except for the cells c3, f3, c6 and f6 (according to
chess algebraic notation). In Arimaa these are known as trap
cells. Instead of black and white pieces, in Arimaa gold and
silver are used respectively. Just as in chess, each player has
16 pieces of 6 different types. In descending weight order
these are: elephant, camel, two horses, two dogs, two cats
and eight rabbits.

Remark 1: By convention, diagrams presented have gold
player on the lower rows (1 and 2) and silver on the upper
rows (7 and 8). Also, gold pieces are shown facing to the
right, while silver pieces are facing to the left.

379

The main goal of an Arimaa game is to take any allied
rabbit to the opposing final row. A player loses if he has
no more valid moves or if he repeats the same position
three times. The game is a draw if both players have no
more rabbits. According to the online Arimaa gameroom [3],
the frequencies of these endings are 2.2%, 0.2% and 0.0%
respectively. An Arimaa game starts with an empty board.
The first move of each player, starting gold, is to place his
16 pieces on the board in any desired order on his first two
rows.

After the initial positioning of pieces the game evolves
through turns, each composed of up to four moves. Every
piece is capable of moving one square up, down, left or right.
Rabbits are not permitted to move backwards and there are
no diagonal moves. The four available moves in a turn can
be distributed as desired among all the allied pieces on the
board.

An additional move in Arimaa is called a dislodge. A
dislodge requires two moves. It consists of an allied piece
dislodging an opposing one of lower weight. A dislodge can
be a push or a pull. In a push, an opposing piece is dislodged
to an adjacent cell and the dislodging piece moves to that
cell. In figure 1, the gold elephant in d3 could push the silver
rabbit from d2 to e2 and move itself to d2. A pull moves the
allied piece to an adjacent cell and pulls the opposing one
to the cell from where the allied piece moved. In figure 1,
the silver elephant on d5 could move to d4 and pull the gold
horse from d6 to d5.

3. "LB
Besdian”
5.*_* ? & 6
5 “&f 5

q

Fig. 1. Basic movements.

A piece is frozen when a heavier opposing piece is
adjacent to it as long as no allied piece is adyancent too
(regardless of its weight). A frozen piece cannot be moved
by his owner, but it can be dislodged by the opponent. In
figure 1, the silver rabbit in a7 is frozen , but the one in d2
is not because it is adjacent to another silver piece.

A capture is made when a piece goes inside a trap cell and
no allied pieces are adjacent to it. When a piece is captured
it is removed from the game. In figure 1, being silver’s turn,
it could capture the gold horse in d6 by dislodging it to c6
with the silver elephant on dS.

380

B. Value of pieces

In Arimaa there is no common agreement to measure the
relative value of pieces. Without a doubt, the most valuable
piece is the elephant but, since it is impossible to capture
an elephant, considering its value is of no relevance. For
the remaining pieces, a mild approximation of their relative
value is as follows:

e A cat is worth more than a rabbit, but not much more.

« A dog is worth about two rabbits.

o A horse is approximately worth a dog and a rabbit.

o A camel is worth more than a horse and a cat, but less
than a horse and a dog.

C. Arimaa tactics [6]

When playing board games, some tactics can be used. A
tactic has a short-term goal. A tactic is a sequence of moves
in one or more turns that can be calculated with precision to
force a positive consequence to a player. In general, tactics
are no longer than two turns (eight moves). One of the most
basic tactics in Arimaa is to to capture an opposing piece.

1) Capture in one turn: To capture a piece in one turn,
the easiest way is to dislodge a lighter piece to an uncovered
trap. This is possible if the piece we are about to capture is,
at most, two cells away from the trap and we have a heavier
piece adjacent to it.

Example 1: In figure 2, the silver dog on b6 could pull
the gold cat in b7 to c7 and then push it to c¢6. This captures
the cat in c6.

a b c d f h
8 PN '\ W\ s
it -

4 v
3 ' _ ¢ e 4 3
* 3 '.! iz .,
. o -
2 & . 2
- &
1 e a1 1
L B T L D R
a b c d e f g h
Fig. 2. Example of capture in one turn.
Example 2: If a piece is just a cell away from an

unprotected trap, it is even more vulnerable, since it can
be captured by non-adjacent pieces. In figure 2, being gold’s
turn, the gold elephant in d5 could move to c5, b5 and use
the remaining move to push the silver dog from b6 to c6,
capturing it.

III. LINGUISTIC GEOMETRY [9]

Linguistic Geometry (LG) is a technique for mathematical
model construction which represents, to a certain degree,
reasoning of human experts about games. LG focuses on

2009 IEEE Symposium on Computational Intelligence and Games

a class of games called abstract board games (ABG). It
was originally based on the chess expertise of the chess ex-
champion Mikhail Botvinnik.

Definition 1: An ABG is an eight-tuple defined as follows:

< X, P, R,, SPACE, v, Sy, Sy, TR >,

where: X = {z;} is a finite set of cells. P = {p;} is a finite
set of pieces. The set P is the union of two disjoint sets P;
and P», which represent the pieces of each player. R, : X x
X — {T, F} is a family of reachability functions indexed by
p € P, where {T, F'} is the set of boolean values, if R,(x,y)
is true then y is reachable from x for the piece p. SPACE =
{S} is the set of possible states .S of the game. S is composed
of a partial localization function ON : P — X and additional
parameters; the value ON (p) = x means that the element p
is at cell z in the state .S. Each state S in SPACF is described
by a list of well formed formulas (WFF): {ON (p;) = z}.
The additional parameters may include, for example, for state
S a function MT'(S) € {1,2} that determines if the turn is
for the first or second player. v : P — RT is a function,
where v(p) is the value of the piece p. Sy € SPACE is the
initial state of the game. S; = {.S;} is the set of target states
of the game. It represents the endgame conditions, and can
represent a victory for any player or a draw. TR = {tr} is
the set of transitions from one state to another of the game
or valid moves. Each transition ¢r(p,z,y) is described in
terms of three lists of WFF: one contains WFF’s that will be
added to the state’s description; other contains WFF’s that
will be deleted from the description of the state; and the last
one contains WFF’s that show the applicability restrictions
of the transition. In concrete, for a state S € SPACE, the
three lists of each transition ¢r(p, x,y) are given by:

add list: ON(p) =y

delete list: ON(p) = x

applicability list: (ON(p) = z) A Rp(z,y)

with p € P and z,y € X.

LG uses a formal language hierarchy to represent some
of the relationships a human expert would usually find over
an ABG. The idea is to create a set of tools that allows one
to introduce heuristics in an abstract level. To do this, the
LG hierarchy uses some geometrical and spatial relationships
among the pieces on the board to create complex structures
that are intuitive to the human player. These structures can
be used in the creation of heuristics.

The LG hierarchy of tools, in order of complexity, is
comprised by: trajectories, webs, translations and searches.
Trajectories are presented through strings (generated by the
grammar of trajectories) which contain an ordered sequence
of cells that a piece needs to visit to reach a destination
cell. Webs are presented through strings (generated by the
grammar of webs) which contain multiple trajectories, these
keep a relationship in function of pieces that attack (or
intercept) others. Translations are grammars that convert a
web into another based on a move made. Searches are strings
(generated by the grammar of searches) that represent search
trees in LG, its nodes are states and its children are generated

2009 IEEE Symposium on Computational Intelligence and Games

through translations.

In LG, the hierarchy of subsystems is presented as a
hierarchy of formal languages [5]. These languages use
symbols. A symbol is an abstract entity not formally defined.
Some examples of symbols are: a, t, a(x;), t(p2,t2,T2),
7(i5), etc. An alphabet is a finite set of symbols. A string
is a finite sequence of concatenated symbols that belong to
an alphabet; for example, a(x1)a(zs)...a(z,) is a string
if a(z1), a(z2), ..., a(x,) are symbols of some alphabet.
A formal language is a set of strings of symbols of some
alphabet; every language includes the empty string . In the
hierarchy of languages of LG each string of a low level is
a symbol of the next higher level. A formal grammar is
a mechanism or description that characterizes a language.
Usually, a grammar is presented as a series of rules which
generate the strings of the language.

Each level of the hierarchy of subsystems of LG is
composed of languages and/or grammars. The strings of the
languages are a way for information exchange between the
levels of the hierarchy. The grammars are the method for
processing the information given by those strings to get some
result. Figure 3 shows the organization of these elements in
the hierarchy of LG.

Fig. 3. LG hierarchy of subsystems.

The lowest level of the hierarchy of LG is the level of
trajectories. A trajectory ¢ is a string of symbols of the form
t = a(x1)a(zs)...a(xy,). The string is formed of values
x; that represent the sequence of steps that takes a piece
to go from one cell to another. These values are linked
through the special symbol a. L (S) is the set of trajectories
of length less than H for a state S of the ABG, and is
called language of trajectories. The language of trajectories
is generated through the grammar of trajectories.

The second level of the hierarchy of LG is the level
of webs. A web w is a string of the form w =
t(p1,t1, m1)t(p2, ta, 7o) . .. t(pk, tk, Tk); Where p; is a piece,
t; is a trajectory and 7; € PARAM is a list of domain specific
parameters. These are linked through the special symbol ¢.
Ly (S) is a set of webs for a state S of the ABG, it is
called language of webs. A kind of webs that are of great
importance are the zones. Zones define the set PARAM as the
natural numbers. In a zone, each value 7; is a time restriction.
The grammar that generates all the strings of a language of

381

zones is the grammar of zones. Figure 4 shows an example
of a web (in particular, a zone).

Fig. 4. Example of a web.

The next level of the hierarchy is the level of translations.
The job of this level is to transform a hierarchy of structures
to match the present state. The process generates a new
hierarchy of structures, this is done in the grammar of
translations.

The highest level of the hierarchy of LG is the
level of searches. A search is a string of the form
(m(i1)m(iz) ... w(im), Child, Sibling, Parent, Other-fun);
where 7 has notational purposes, i represents a state of
the ABG. The parameters Child, Sibling and Parent are
functions that give information on the structure of the tree.
The parameter Other-fun is an n-tuple of domain specific
parameters. A search represents an LG search tree.

A. Controlled grammars

The tools used in LG for the generation of languages are
a kind of grammars called controlled grammars. Controlled
grammars are rule based, they transform input symbols into
output symbols through the criteria captured in the rules. A
general description of controlled grammars is shown on table
I. Each rule of a controlled grammar is called a production.
Each production has a label [, an applicability condition
Q(,,), akernel of the form A(,,) — B(,,), a set of formulas
m), that operates over the kernel parameter symbols, a set
of additional formulas 7, (that are not in the kernel) of
the form C(,,) = D(,,) and two sets of feasible tags Fr
and Fp. The parameters (values and functions) are shown
between parenthesis. The values of the parameters change as
productions are applied.

Remark 2: In table I, the formulas 7 are implicitly pre-
sented among the kernel parameters, though formally, 7, is
an independent set.

Tag Cond.
l Q(7 K)

Kernel, 7, T Fr Fp
A(??)HB(7?) C(H):D(H) LT LF

TABLE 1
CONTROLLED GRAMMAR DESCRIPTION.

382

A controlled grammar works in the following way. At the
beginning of the generation of the string it starts with an
initial symbol in the production with tag [. After applying
the production:

« If condition Q(,,) holds, the production with tag [is
applied making the substitution specified by the kernel,
and goes to a production with tag in the set L.

o If Q(,,) does not hold or the string does not contain
the symbol of the left side of the kernel A(,,), the
production [is not applied, and goes to a production
with tag in the set L.

The substitution specified by the kernel is carried over
the string (generated at the moment) by replacing the left-
side symbol of the kernel A(,,) for the right-side of it. If
the condition Q(,,) holds, besides from making the kernel
substitution, the operations specified by 7 and ,, are also
executed, updating corresponding values. The sets L and
Lr can be empty. The string generation ends if, when
applying a production, holds either (Q(,,) = T)A(Ly = 0)
or (Q(,,)=F)AN(Lp =0).

Definition 2: A controlled grammar G is an eight-tuple:
G = (Vp,VnN,Ver, E, H, Param, L, R),

where: Vr is the terminal symbol alphabet. Vy is the
non-terminal symbol alphabet; I € Vy is the initial
symbol. Vpg is the first order predicate calculus alphabet
PR: Vpr = TruthJConlJVarJ Funcl] Pred|] LOG,
where: Truth is the set of truth values 7" and F'; Con is the
set of constant symbols; Var is the set of variable symbols;
Func = FconlJ Fvar is the set of functional symbols,
with constant symbols F'con and variable functional symbols
Fuvar; Pred is the set of predicate symbols; LOG is the set
of logical operators. I/ is a numerable set called problem’s
domain. H is an interpretation of the predicate calculus PR
over the set E. Param is the function Param : Vp |JVy —
2Var | that associates each symbol of the alphabet V7 |J Vi
to a set of parameters. L is a finite set called tag set. R is a
finite set of productions, that is, a finite set of seven-tuples
of the form: (I,Q, A — B,my,m, Fr, Fr), where | € L is
the tag of the production; () is the applicability condition of
the production, represented by a well formed formula of the
predicate calculus PR; A — B is an expression called kernel
of the production, with A € Viy and B € (VU Vn)*; 7y is
a set of functional formulas that are among the parameters of
the symbols of the kernel; 7, is a set of functional formulas
that are not among the parameters of the kernel; Fp C Lisa
set of permissible labels in case of success (Q =T); Fr C L
is the set permissible labels in case of failure (QQ = F).

IV. ARIMAA MODEL

The Arimaa model is built using the LG tools as a base. An
LG based model must have: an ABG modeling the essential
characteristics of the problem, a level of trajectories with a
corresponding grammar of trajectories, a level of webs with a
corresponding grammar of zones, a level of translations with
an adequate grammar of translations and a level of searches

2009 IEEE Symposium on Computational Intelligence and Games

with a corresponding grammar of searches corresponding to
the heuristics of the problem.

The proposed model uses the same grammar of trajectories
as the one presented in [9]. The level of webs is composed of
a new zone for the game of Arimaa. The level of translations
is composed of the grammar of translations presented in [9]
with some changes to adapt to the new zones. Finally, the
level of searches is formed by a new search which models
some basic tactics for the game of Arimaa.

A. The ABG for Arimaa

To model the game of Arimaa, it is necessary to capture
the most basic characteristics of the game, such as: cells,
pieces, reachability relationships, valid moves, etc. The cor-
responding ABG for the game of Arimaa is the following
8-tuple:

< X, P, R, SPACE, v, Sy, Sy, TR >,

where:
X ={1,2,...,64}
P=rP P

P, = {G.EL,G-CA, G_.HO:, G_.HO2, G-DO1, G-DOs,
GCT,GCTy,G.RA,...,G-RAs, }
P, = {S_EL,S.CA, S_.HO;,S_-HO3, 5-DO1, 5-DO3,

S.CTy,SCTy, S RAy,...,S RAg, }
T if (pgSR)A(x ¢TB)A(y=x+8))V
((p & GR) A (w¢) (y=z-8))V
Ry(x,y) = (g RB)A(y=x+1))V
(z g LB)A(y=2—1))
F' in other case
where:

SR = {S_.RA;}, withi =1,2,...,8
GR = {G.RA;}, with i =1,2,...,8
TB = {57,58, 59,60, 61,62, 63,64}
BB ={1,2,3,4,5,6,7,8}
LB ={1,9,17,25,33,41,49,57}
RB = {8, 16,24, 32, 40,48, 56,64}
SPACE is the set of every possible valid position in the
game of Arimaa.
3 ifpe {GRA;,SRA}; i=1,2,...,8
4 ifpe {G,CTl, G.CTy, S.CTy, SLC'TQ}
6 ifpe {GLDOl, G-DO5, S_DOq, S,mg}

UV 9 it p e {GHOy, G HOy, S.HO:, S.HO,)
14 if p e {G.CA, S.CA}
20 if p e {G.EL,S.EL}

S() = (Z)

Sy = {Si},

such that the WFF ON (p) = z is in the state S; and
either condition is fullfilled:

(p € GR) A (x € TB); victory for player P,
(p € SR) A (x € BB); victory for player Py
TR = {tr}

Remark 3: The construction of the set of transitions of
the system (TR), the set of valid moves, is done according

2009 IEEE Symposium on Computational Intelligence and Games

to the rules of Arimaa. Here, such construction is made under
informal terms, the reader is referred to [9] and subsection
II-A for more information.

In the previous definition, the set of cells X is comprised
simply by a numerical sequence whose correspondence is
presented in figure 5. The set of pieces P contains silver
and gold pieces each one containing itself the 16 pieces for
the corresponding player. The reachability relation R, simply
reflects the mobility of the pieces of Arimaa. The function of
value of the pieces is simply proposed with some values that
conform to the proposals of subsection II-B. The initial state
Sp is the empty board. The set of final states S; is formed
by those states in which a rabbit is on the goal row.

d e f
60|61 |62
52|53 |54
44145 |46
36|37 |38
2812930
17|18 |19 20|21 |22 |23 |24
9 10|11 12|13 |14|15|16
1123 /4|5|6|7)|8
d e f g h

a b c
5715859
49|50 |51
414243
33|34 |35
25|25 |27

g h
63 |64
55|56
47 148
39 40
31|32

- N W~ OO N
- N W A~ OO N @

a b c¢

Fig. 5. Cell distribution for the LG Arimaa model.

Some auxiliary definitions are given to simplify the nota-
tion for the remaining of the paper.

Definition 3: The set of trap cells denoted by TRAPS is
equal to the set {19,22, 43,46} (see gray cells in figure 5).

Definition 4: The function HEAVIER : P x P — {T, F'}
is the function of piece domination. It tells if a piece is
heavier than other and, as a consequence, if it is capable
of freezing it. It is defined as follows:

T if v(p1) > v(p2)
F o if v(p1) < v(p2)

B. Grammar of CUT zones for the game of Arimaa

HEAVIER(pl,pQ) = {

The grammar of zones presented in [9] is not compatible
with the characteristics of the game of Arimaa. The main
reason for this is that it assumes that pieces can attack and
take other pieces that are at the destination of the movement.
This does not happen in Arimaa.

A grammar of zones is presented for the game of Arimaa.
It is called grammar of CUT zones. Its main purpose is to
model the interaction of pieces around a trap square, so as
to be used to model the capture in one turn tactic.

The grammar of CUT zones is shown in table II; it is based
on the grammar of zones presented in [9]. The zone includes
two cases of immediate capture (modeled by productions 2;
and 3;): the first one consists of capturing a piece adjacent to

383

the trap square when its captor is at most two moves away;
the second being when that piece is at most two moves away
from the trap and its captor is adjacent to it. In both cases
the base trajectories of the pieces to their destinations are
included. Connected trajectories are also included in a similar
way as proposed in [9]. The following definitions complete
the grammar of table II.

Vp ={t} Vn={I A4}

Vpr : Con = {x07y03107p0}; Var = {x,y,l,p, 7—7077)17
Vg, ..., Up, W1, Wa, ..., wy,} (for short, it is denoted
u=(x,y,1), v=_(v1,02,...,05), w= (w1, ws,...,
wy), zero = (0,0,...,0)); Func = Fcon|J Fvar,
Fecon = {fm, fy, fl,gl,gg, <e s 9n, hi,ho, ... har,
19, kY, ... hY,, DIST, init, ALPHA, CTRL,},

(for short, it is denoted f = (fs, fy, f1), 9 = (91,

92+ 9n))s Fvar = {xq,yo,lo, po, TIME,

NEXTTIME};

Pred ={Q1,Q2,Q3,Q4,Qs5,Q6, Q7 },

Qu(w) = (~3p1. pa(CTRL,, (x) A CTRLy, (2)
~OPP(po,p1) A ~OPP(po, p2))

Q2(u) = (3po, pa(CTRLy, (x)\
MAFON (p,),p. (ON (o)) < 2)))

Qs3(u) = (3po, pa(CTRLy, (ON(po))A
(MAPON(po%po (z) <2)))

Qa(u) = (x #n)V(y #n)

Qs(u) = (Bp((ON(p) = 2) A (I > 0) A (2 # z0)A
(x # y0)) A ((mOPP(po, p) A (MAP, ,(y) = 1))
VIOPP (o,) A (MAP, (1) < 1)

Qs(w) = (w # zero)

Qr=T

E=27Z;UXUPUL(S)
Parm : {I, At} — 2Vor
Param(I) = {u,v,w}, Param(A) =
Param(t) = {p, 7,0 };
L={1,4,6,7} Jtwothreel five;

{u,v,w},

lwo = {217227 .. '721\/1}3 three = {31,32, .. .,3M},
fz've = {51,52,...75]\/[}
At the beginning of derivation: v = (zo,¥0,l0), v =
zero, w = zero, x9 € TRAPS, yo = 0, Iy = 0,

po € P, n = card(X), M = card(L(S)), TIME(z)
NEXTTIME (z) =2nVz € X

CIRL, : X — {T,F}, CIRL,(x) =
init:(XXXXZ+)><Z+—>Z+

Ry (ON(p),)

init(u, r) = 2n, if u=(0,0,0)
’ r, if w#(0,0,0)
Fr(X xXxZy)x2Z} H(XXXXZJ,_) flu,v) =
(& + 1,y0), if (x4 m) A (1> 0)V
((y=m) A (L <0))
(Ly+ 1, TIME(y+1)x if (x=n)V ((y # n)A
byi), (il <0))

DIST : X x P x LY(S) — Z, Let ty € L*(S) be
to = a(zo)a(z1) ... a(zm), to € tpy (20, 2m,m);
Dlg($7p07t0) =

384

k+1, ((zm=yo)A(p=po) A(Fk(1 <k <m)A
(z=21))) V (((zm # yo) V (p # p0))A
FE(I<k<m—-1)A(x=2)))

2n, in other case

ALPHA : X x P x LI*(S) x Z, — Z,,
ALPHA(‘Tap()athk) =

max(NEXTTIME (x), k), if (DIST(x,po,to) # 2n)A
(NEXTTIME (z) # 2n)
k, if (DIST(x, po,to) # 2n)A
(NEXTTIME(z) = 2n)
NEXTTIME (z), if DIST (x, po,to) = 2n
gr: Px LY(S) x Z% — Zy, withr € X
1, if DIST(r,po,to) < 2n
9r(Po, to, w) = .
wy, if DIST(r, po,to) = 2n

g:PxL(S)x 2% — 77

g(p07 to, w) = (gl(po’ to, w)7 92(p0a to, w)7 cee 7gn(p0’ to, w))
TRACKS, = {p} x | U L |G (z.y.k, pa)D,
1<k<l
RO : (X x X x Z,) — P x L(9)
Let TRACKS,,, = {(po,t1), (po,t2).--., (o, ts)}
with (b < M),
(po,ti), if (TRACKS,, # 0) A (i <b)
hO(u) = (po,ty), if (TRACKS,, # 0) A (i > b)
£, in other case
hi: (X x X x Z) — P x Ll°(S)
Let TRACKS, = {(p,t1), (0, t2). ..., (D;tm) }
with (m < M),
(p,t;), if (TRACKS,, # 0) A (i < m)
hi(u) = S (p,tm), if (TRACKS,, #0) A (i > m)
g, in other case

Productions 2; and 3; are new, with respect to the grammar
of zones presented in [9], and intend to reflect the character-
istics of these new kind of zones. Conditions ()1, @2 and Q3
are new and reflect some characteristics of their respective
productions. Also, production 3; is analogous to production
2; but it applies under different circumstances. The function
CTRL,(x) was added to reduce notation; it is true if piece
p is adjacent to cell z.

Remark 4: The grammar does not include cases for which
the piece to capture is already inside the trap cell.

C. Translation grammar for Arimaa

The grammar of translations for Arimaa is based on the
one in [9] but, some changes are needed to reflect the
changes made to the grammars of zones. The only actual
difference is the definition of the function timer,. This
function controls the times assigned to the translated versions
of the trajectories. The modified version of the function
timer, is denoted y timer? and it is defined as follows:

Definition 5: Let 7, (Zl) Z5 be a translation from the
zone Zy € Lz(S1) to the zone Zy € Lz(Ss), and let Z; =
t(po,to, m0)t(p1,t1,71) - - - t(pr, ty, 7). A time distribution

2009 IEEE Symposium on Computational Intelligence and Games

L Q Kernel, 7 (Vz € X) Fr Fr
1 I(u,v,w) — A(u,v,w) 0 two 0
2 Q2 A(u,v,w) — t(h?(w'),4)t(po, a(ON(p,))a(z),1) TIME(z) = DIST (z, h?(u)) {4} three
A((0,0,0),g(po,hz("), w), zero) = (ON(pa),ON (p,),4)
3j Qs A(u, v, w) — t(h}(W), 4)t(pa, a(ON (pa)) TIME(z) = DIST (2, h3 (u)) {44 0
a(ON (po), DVA((0,0,0), g(po, K (w'), w), 2e10) ' = (ON(p), z,4)
4 Qa4 A(u,v,w) — A(f(u,v),v,w) NEXITIME(z) = five {6}
init(u, NEXTTIME %))
5r Qs A(u, v, w) — t(h; (), TIME(y)) NEXTTIME(z) = W {4
A(u, v, g(p, hj(u),w)) ALPHA(z, hj(u), TIME(y) — 1+ 1)
6 Qs A(u,v,w) — A((0,0,0),w, zero) TIME(z) = NEXTTIME (=) {4} {7}
7T Qr A(u,v,w) — ¢ 0 [} [
TABLE II

GRAMMAR OF CUT ZONES

function tzmer is the function:

: Conny, (Z1) — L+
three cases are considered:

tzmer
To build tzmer

1) If I, (to) # to; that is, if transition Tj occurs over
the main trajectory tg of the zone Z;, then:

timery (t(pe, te,7c)) =7 —1

for every symbol t(pe, tc, 7c) € Coniy, .
If TIp, (tx) # t for some tj, # to; that is, if transition
T, occurs over a trajectory t; of the zone Z; which

2)

is not the main trajectory, then timer? is defined
recursively as:
timerA (t(p;, ti, 7)) =
T if (1 =0)V (Clti,te)=T)
max TNEW (t.,t;) in other case
t.€CA(t;)
where:
CA(t;) = {t.|C(t.,t;) =T, for some
t(pes te, 7e) € Conniy (Z1)},
timer, (t(pe, te, 7.))— if Cq
len(t.),
TNEW (£, 1;) = timery (t(pe, te, 7c))— if Ca
len(te) + 1,
timery (t(pe,te, 7c))— if Cs
len(t.) + 2,

= t. # tp N "HEAVIER(t.,t;)
(te # tx N HEAVIER(t.,t;))V
(te = tx NHEAVIER(t.,1;))

=(te=tg) A HEAVIER(tC, t;)
If HTO(m) =tm Vit € TA(Z1); that is, if transition
T, does not affect any of the trajectories of the zone
Z1, then:

3)

timer? (t(pm,tm,Tm)) =Tn

for every t(pm,tm, Tm) € Conny, .

2009 IEEE Symposium on Computational Intelligence and Games

D. Grammar of searches for Arimaa

It is possible to model heuristics that represent common
tactics for the game of Arimaa using the proposed grammar
of zones and the modified version of the grammar of trans-
lations. The formal model of the grammar that must capture
those heuristics is the same as in [9].

Capture in one turn: The main goal of this tactic is to
capture an opponent’s piece. To achieve this, a CUT zone is
used along the following criteria to direct the search:

The goal is to capture an opposing piece. A CUT zone is
to be generated in each of the board traps. The attacking
player will prefer to dislodge the attacked piece towards the
trap cell. Defensive player will prefer to move the attacked
piece away from the zone. Attacking player shall try to move
obstacles away from its trajectory. Defensive player shall try
to dominate the trap to avoid capture. Defensive player shall
try to block the main trajectory of the zone.

V. TEST CASE AND RESULTS

A test case is proposed, it is analyzed by a human
and the results are compared to those given by a software
implementation of the model. It must be clarified that through
computing strength it is possible to consider some positions
that are usually not considered by human players; though,
at the same time, some possibilities that the human player
would take into account are excluded due to weaknesses in
the heuristics proposed. It is possible to reduce this effect by
means of modifying the heuristics.

The test case is based on the capture in one turn tactic. The
introduced examples are academic and could or could not
come from actual Arimaa games. The figure shown presents
simplified versions of the generated zone. The straight lines
represent the main trajectories, while the arcs represent
second or superior negation trajectories. The analysis ot the
example consists of two parts, one arount trap c6 and the
other one around trap f3. Just the second one is discused
here.

385

5 - 5
q i "';‘ q
3 H'h'g,r ol i e 3
Sl A= [ﬁ
2 qﬂ} 2
1 l’ i 1

Fig. 6. Test case - starting board position.

A. Test case

In case it is gold’s turn, the gold elephant in h4 can capture,
in one turn, the silver horse in h3; to achieve this he only
needs to push it twice to g3 and f3. The situation is a little
more complicated if it is silver’s turn since the silver horse
is frozen and cannot come out of the dominion of the gold
elephant. To cover the silver horse, silver has the following
options: take the silver dog from c5 to f4 (following c4, d4,
e4, and f4) to cover the trap square f3, in this case the gold
elephant could capture the silver dog instead of the silver
horse (moving from h4 to g4 and then pushing the silver
dog from f4 to f3); silver could also move the silver cat
from e2 to f2 as a mean to cover f3; or take the silver cat
from e2 to g3 (following 2, g2, and g3), where the silver cat
covers the trap, unfreezes the silver horse in h3 and blocks
23 to avoid a dislodge of the silver horse to the trap. It can
be seen that silver has options to avoid the capture of the
silver horse only if silver is to move first.

a b

Fig. 7. Test case - CUT zone for the trap square 3.
The CUT zone around f3 is shown in figure 7. It includes

all the pieces in the figure except from the silver horse in 7
since it has no active action. The inclusion of the silver dog

386

in c5 and the silver cat in e2 is direct due to the possibility
of controlling trap f3 in four or less moves. The gold horse
in e6 is included in the zone because of the possibility of
blocking or freezing the silver dog in ¢5 (when it crosses e4).
The same happens with the gold rabbit in fl and the gold
cat in e3, but these do not have relevance over the trajectory
of the silver cat in e2.

When gold plays first, the sequence of movements needed
to capture the silver horse are direct and, given the priorities
of the heuristics (subsection IV-D), it is the first sequence to
be generated. The solution generated is: gold elephant in h4
pushes silver horse from h3 to g3 and f3.

When silver plays first, the software’s proposed solution
is: move the silver cat from e2 to f2, this avoids immediate
capture of the silver horse. The program returns this solution
for being the first to fulfill the requirements. Hence, for this
case, the proposed model is also satisfactory.

VI. CONCLUSIONS

The proposed Arimaa model is adequate for modeling
some of the most common tactics of the game of Arimaa.
The model simplifies the formulation of heuristics with
particular objectives. The zones and heuristics proposed in
this work (level of webs and searches) are quite restrictive.
The modeling of a greater number of tactics results in a
greater number of zones and a greater complexity on the
level of searches. In the test case shown in this work, the
results are in accordance to the analysis of the positions.
There are some cases where the results are not optimal and
the proposed model shows some weaknesses. To correct them
to some degree, it is proposed to extend the level of searches
by using the tools introduced in this work.

REFERENCES
[1

—

Christ-Jan Cox. Analysis and implementation of the game arimaa.

Master’s thesis, MICC-IKAT, 2006.

David Fotland. Building a world-champion arimaa program. In

Computers and Games, pages 175-186. Springer Berlin / Heidelberg,

2004.

[3] Arimaa gameroom server. http://arimaa.com/arimaa/gameroom/.

[4] Timothy Hart and Daniel Edwards. The alpha-beta heuristic. Technical

report, Cambridge, MA, USA, 1963.

John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.

[6] On line arimaa book. http://en.wikibooks.org/wiki/arimaa.

[7] Claude Elwood Shannon. Programming a computer for playing chess.

Philosophical Magazine, 41:256-275, 1950.

Boris Stilman. A linguistic approach to geometric reasoning. Com-

puters and Mathematics with Applications, 26(7):29-58, 1993.

Boris Stilman. Linguistic geometry: from search to construction.

Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[10] Omar Syed and Aamir Syed. Arimaa - a new game designed to be
difficult for computers. International Computer Games Association
Journal, 26:138-139, 2003.

[11] Haizhi Zhong. Building a strong arimaa-playing program. Master’s

thesis, University of Alberta, 2005.

[2

—

[5

—_

[8

—

[9

—

2009 IEEE Symposium on Computational Intelligence and Games

