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Abstract

This project is concerned with the board game Arimaa and researches ways to implement an
agent to play the game. The project agent, named bot_degree is implemented in C/C++ and
uses two specific algorithms to construct and traverse the game tree; the UCT algorithm and
Monte-Carlo Simulation. UCT is an extension of the mini-max bandit algorithm, called UCB1
(Upper Confidence Bounds), applied to trees and provides a way to manage the trade-off between
exploration and exploitation. Monte-Carlo Simulation has been implemented to help evaluate
nodes within the game tree and assist in the traversal of the UCT algorithm. Performance analysis
was carried out for bot_degree and showed that bot_degree could win against the random bot r0
with a win percentage of as much as 75.4% ± 3.6% with 95% confidence.
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Chapter 2

Introduction

Artificial intelligence is fast becoming one of the most interesting areas within the computing
industry, with many different possibilities for research. The academic community is still a long
way off from strong artificial intelligence, but recently there has been a break through with getting
computers to play board games well. Originally it was thought that a computer would never be
able to beat a grandmaster in chess, then in 1997 Deep Blue beat the world champion, Garry
Kasparov [8]. This opened the flood gates for researchers to try and develop computer agents to
play other board games. One of those board games is called Arimaa [15]. Arimaa was specifically
designed to be hard for computers to play, it has a high branching factor and many different
combinations of starting positions. Thus the standard brute force approach is infeasible. Getting
a computer agent to play Arimaa at a strong human level would be a break through in artificial
intelligence because computer agents would finally be able to play intelligently and win against
humans, without using any brute force techniques.

The high branching factor is common to many board games that already have computer agents
that play effectively and section 3 discusses how intelligent search approaches have been applied
to the game of Go [1]. The best computer agent to play Go is called MoGo [5] which uses two very
interesting approaches to tackle the high branching factor problem; the UCT algorithm [5, 4] and
Monte-Carlo Simulation. UCT is an extension of the mini-max bandit algorithm, called UCB1
(Upper Confidence Bounds) [10], applied to trees. It treats each of its turns independently and
thus constructs a new game tree each turn. Monte-Carlo Simulation has been used in this context
to provide random simulations which help in evaluating the strength of a particular move within
the game tree [11]. Both these approaches work very well together and provide a way to construct
and traverse the game tree as well as making a trade-off between exploration and exploitation [5].

While these approaches are very effective in the game of Go, they have not been applied to the
game of Arimaa. Therefore this project is concerned with researching ways to apply UCT and
Monte-Carlo Simulation to the game of Arimaa. In order to do this, some modifications of the
algorithm must be made, for instance normally the UCT algorithm will explore each node on a
particular level once before descending to lower levels of the game tree. This is fine in Go because
even though the branching factor is high, it is still feasible. Arimaa’s branching factor can be
in excess of 25,000 unique possible moves [18] and thus the trade-off between exploration and
exploitation must be addressed. In more detail, this project is concerned with the following:

• Testing the UCT algorithm against the ε-Greedy algorithm and comparing the effectiveness
of the UCT algorithm with Alpha-Beta search.

• Implementing the UCT algorithm to traverse the game tree and provide a trade-off between
exploration and exploitation.

• Implementing Monte-Carlo Simulation to evaluate the effectiveness of each node within the
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game tree.

• Encapsulating the algorithms within an agent, named bot_degree, that is implemented in
C/C++.

• Testing the effectiveness of bot_degree against other agents.

The rest of this report is organised as follows: Section 3 explores in detail the background to this
project and researches the relevant area’s associated with Monte-Carlo Simulation, UCT, Arimaa
and Go. Section 4 talks about the project goals and section 5 details the design of bot_degree
and how it has been implemented. Section 6 describes the types of tests that have been carried
out and the associated test plans that have been used to test bot_degree thoroughly. Section 7
provides an evaluation of bot_degree, analysing its performance against other Arimaa playing
bots, and finally section 8 evaluates how well the project was managed, improvements that could
be made and known issues with bot_degree.

Appendix A is provided for completeness and details specific notation that needs to be conformed
to when interfacing with the Arimaa server. Appendix B shows the results of the experiment that
compares UCT against ε-Greedy. Appendices C and D show the initial and final project Gantt
Charts respectively, and appendix E provides the test plans and test results that were used to test
bot_degree.
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Chapter 3

Background

It is thought that Go was played up to 5,000 years ago by the Japanese, Koreans or Chinese. It is
played between two people on an 18 by 18 square board (19 by 19 intersections), one of which has
white pieces, the other black. Each turn, a player may place one of their pieces on any intersection
that is not occupied by another piece. Once a piece has been placed it may not be moved, unless
it is captured and removed from the game. The aim of the game is to occupy the most territory,
and lose as few pieces as possible. The game ends when both players pass.

At the start of the game there are 361 unique moves that may be played. This high branching
factor is why constructing a tree of all the possible moves in the entire game is infeasible, and
is why the A.I. community has found it very hard to construct a computer agent to play this
game at a competent level. Recently a new computer agent has emerged, called MoGo [5], which
was invented by Sylvain Gelly, Yizao Wang, Remi Munos, Olivier Teytaud and Pierre-Arnaud
Coquelin. MoGo is currently the best rated computer agent [7] on the Go server and uses a form
of Monte-Carlo Simulation and the UCT [5, 4] algorithm to play the game.

3.1 MoGo

MoGo constructs a tree by using a rollout-based algorithm [10] during its turn, and then from the
tree picks the next move based on the statistics associated with the tree. Each node represents
a board state and contains how many games have been won or lost, from this current state. At
the start of each turn, MoGo constructs a new tree with only the current board state as the root.
It will then populate the tree with board states, by iterating through the tree between 70,000 to
200,000 times. Each iteration is called an episode and this episodic approach is the aforementioned
rollout-based algorithm. The way MoGo performs each episode is in two parts. The first part is
traversing the tree from the root to a leaf node using the UCT algorithm. The second is using
Monte-Carlo Simulation to simulate a game from the leaf node, (i.e. a particular board state) to
the end and then evaluating it.

3.1.1 UCT
The UCT algorithm is used to decide how the tree is descended, from the root node to a leaf node
using a trade-off between exploration and exploitation [5]. UCT is an extension of the mini-max
bandit algorithm, called UCB1 (Upper Confidence Bounds) [10], applied to trees. It treats each
board state as a multi-armed bandit problem, with each arm being a legal move to another board
state, having unknown reward but of a certain distribution [5]. UCT only considers two types
of arms, either winning ones or losing because a draw in Go is very rare. The reason why UCT
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outperforms other tree searching algorithms, such as Alpha-Beta, as mentioned in [6] is as follows
:

1. UCT can be stopped at any time and still produce good results, whereas if Alpha-Beta is
stopped prematurely, some child nodes of the root have not even been evaluated yet.

2. UCT handles uncertainty automatically. This means that at each node the value is the mean
of each of its children’s value, weighted by how many times that child has been visited.

3. It explores more deeply the good moves in an automatic manner. This is achieved by growing
the tree asymmetrically

Figure 3.1 is a graphical representation of what the tree may look like during a particular episode.
Figure 3.2 shows a possible path of the UCT algorithm to a leaf node.

Figure 3.1: A graphical representation of the tree built during Monte-Carlo Simulation

The root node represents the current board state, all other nodes represent other possible board states.
A line drawn between two nodes, A and B, indicates a legal move that transforms the board state

represented by node A into the board state represented by node B.

The UCT algorithm, that was first introduced in [10], chooses the best arm to play next based on
equation 3.1, where It is the index of the selected arm that maximises the equation at episode t, t
is the current episode and i is the index of an arm. The function Ti(t− 1) is the number of times
arm i has been selected up to episode t − 1. Therefore X̄i,Ti(t−1) represents the average payoff
that arm i has produced, and can be found by summing through all the payoffs that arm i has
produced up to episode t− 1 and dividing by Ti(t− 1). In practice however, it is computationally
expensive to continually iterate through all the payoffs of a certain arm, and therefore the total
payoff of a particular arm is held instead.

It = argmax
i∈{1,··· ,K}

{X̄i,Ti(t−1) + biast−1,Ti(t−1)} (3.1)

The bias function, equation 3.2, provides a way of trading between exploration and exploitation.
If an arm has not been selected much the bias becomes very big and biases the UCT algorithm
towards the exploration strategy. If an arm has been selected many times the bias is small and
reduces the chance of it being selected. In order to show the effectiveness of the UCT algorithm,
an experiment was constructed in which the UCT algorithm was compared with an ε-Greedy
algorithm, details of which are located in Appendix B.

biast,c =
√

2 ln t
c

(3.2)

7



Figure 3.2: A graphical representation of the tree built during Monte-Carlo Simulation and the
particular path the UCT algorithm may take

The arrows show the path of the UCT algorithm. The dashed arrow indicates that the Monte-Carlo
Simulation will now be performed.

3.1.2 Monte-Carlo Simulation
Once the UCT algorithm reaches a leaf, the Monte-Carlo Simulation takes over. The first step is
to choose a new move, m, to play based on an evaluation function from the current board state,
c. A new board state, n, which corresponds to applying the move m to the board state c, is then
added to the game tree with its total payoff and number of times selected initialised to 0 and
1 respectively. The board state n is then evaluated, so to do this, MoGo plays a random game
against itself from n to the end. The Monte-Carlo method tries to simulate the most probable
moves that would be played during this random game. When the end of the random game is
reached, the payoff is 1, if m resulted in a win, or 0 otherwise. It should be noted that draws are
not taken into account as they happen very rarely in Go. Each node that was visited from the
root to n is updated by adding the new payoff to its total payoff and incrementing the number of
times its been selected by 1. The next episode commences, starting from the root of the tree.

Once many episodes have taken place, the child node which maximises the UCT algorithm is
chosen. The UCT algorithm takes care of the exploration-exploitation trade-off and thus if a node
has been simulated more, it means that the expected reward from playing a move to reach that
node is higher and thus a better move to play. The aim of this project is to apply these techniques
of Monte-Carlo Simulation and the UCT algorithm in implementing a computer agent to play the
board game Arimaa [14].

3.2 Arimaa
Arimaa was invented in 1999 by Omar Syed and Aamir Syed. It was invented to be specifically
difficult for computers to play and relatively easy for humans to play. The idea was that this
game would create a challenge for the artificial intelligence community so that new and exciting
algorithms and techniques were invented for playing games. Arimaa is a 2-player, zero-sum, perfect
information board game [2]. Zero-sum means that if one player is winning, the other player is
equally losing; their scores sum to zero [12]. A perfect game is one where only one person moves
at a time and both players know exactly where the other player moved.
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3.3 Arimaa Rules
The rules of Arimaa [14] are simple and intuitive to play and this is why humans can play the
game so well compared to computers. Arimaa can be played on a standard chess board (8 by 8
squared board) with standard chess pieces. The board is annotated with letters and numbers so
that each square can be accessed. Lower case letters a to h indicate the column and numbers 1 to
8 indicate the row. There are four trap squares that are situated on c3, f3, c6 and f6, see figure 3.3.
Table 3.1 contains information on the Arimaa pieces and their Chess alternatives.

Figure 3.3: The location of the four trap squares on the Arimaa playing board

The traps are circled in red. Picture adapted from [16]

Table 3.1: The pieces used in Arimaa and the chess equivalent

Arimaa Piece Arimaa Picture Chess Equivalent Quantity

Elephant King 1

Camel Queen 1

Horse Rook 2

Dog Bishop 2

Cat Knight 2

Rabbit Pawn 8

Pictures used from [3]

The order of strongest to weakest is as follows : Elephant, Camel, Horse, Dog, Cat and finally
Rabbit. An explanation of what it means to be stronger or weaker will be given in due course.
Each piece in Arimaa moves in exactly the same way; they can move one square north, south, east
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or west, however Rabbits may not move south, see figure 3.4. The goal of Arimaa is to get your
Rabbit to the other side of the board, see figure 3.5.

Figure 3.4: The method of moving in Arimaa

Picture adapted from [16]

Figure 3.5: The goal squares in Arimaa

Picture adapted from [17]

During a player’s turn, they may move up to four steps. One step counts as moving a piece to
an adjacent square (Note that diagonals do not count as adjacent squares). Multiple pieces may
be moved during a player’s turn and the direction of a piece may be changed. The strength of a
piece determines what that piece can and cannot do. There are three concepts in Arimaa called
pulling, pushing and freezing, which are dependent on the strengths of the pieces involved.

3.3.1 Pushing And Pulling
Pushing or pulling happens between two pieces, where one of the pieces is stronger then the other.
For instance a Dog may push or pull a Cat or Rabbit, but not a Horse, Camel, Elephant or another
Dog. To push a weaker enemy piece with your stronger piece, first the stronger piece must be
adjacent to the weaker enemy piece. The weaker piece is then moved into one of its unoccupied
adjacent squares and the stronger piece is moved into the square where the enemy piece was. To
pull a weaker enemy piece with your stronger piece, first the stronger piece must be adjacent to
the weaker piece. The stronger piece is then moved into one of its unoccupied adjacent squares
and the weaker piece is moved into the square where the stronger piece was, see figure 3.6.

Pushing or pulling requires two steps and must be completed within the same turn. While a
stronger piece is pushing it may not pull at the same time and vice versa. Pushing and pulling
can be done a total of twice each turn because of the restriction of four steps per turn.
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Figure 3.6: Gold performing a push on Silver

(a) The Gold Camel is posi-
tioned next to the Silver Rabbit

(b) The Gold Camel pushes the
Silver Rabbit south

(c) The Gold Camel moves east
into the Silver Rabbit’s place

Picture adapted from [17]

3.3.2 Freezing
Freezing also happens between a stronger piece and at least one other weaker piece, (i.e. a stronger
piece may freeze multiple weaker pieces). To freeze a weaker enemy piece with your stronger piece,
just move your stronger piece next to the enemy’s weaker piece. That enemy piece is now frozen
and may not be moved until either the stronger piece moves away or another friendly piece is
adjacent to it. In figure 3.6a, the Silver Rabbit is frozen and cannot move because the Gold Camel
is adjacent to it.

3.3.3 Trapping
If any piece is moved onto one of the trap squares they are immediately removed from the game.
Pieces can be pushed or pulled onto trap squares. If a piece is on a trap square but has a
friendly piece adjacent to it, then the piece in the trap square is not removed from the game.
See Appendix A for further rules that apply to making a computer agent to play Arimaa on the
Arimaa server.

3.3.4 Hard For Computers
Arimaa is hard for computers to play because of many different factors that were specifically taken
into account when Arimaa was invented. The main problem is the amount of legal moves that can
be played from a given board state, otherwise know as the branching factor. A board state can
have as many as 300,000 four step move sequences [3] however this contains different permutations
of the same move and thus a typical board state can have within the region of 20,000 to 30,000
unique four step moves. The way Deep Blue calculated the next move to play during chess was to
construct a tree of all the possible different moves, choosing the best move from the tree, known
as the brute force approach.

The number of nodes in the search tree is affected by the size of the branching factor [18], and
since this is very high in Arimaa it is infeasible to try to construct a tree of all possible moves.
Equation 3.3 represents the size of the search tree at depth d, branching factor b, and grows
exponentially. As an example of how infeasible it is to construct a tree of all possible moves in
Arimaa, a comparison has been made between the average branching factors of Go and Chess
[9], see Table 3.2. In each case it is assumed that a 5 move look ahead is required and that the
computer searching the tree can evaluate 1,000 nodes a second.

bd (3.3)
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Table 3.2: The contrast between the branching factors of Go, Arimaa and Chess

Game Branching Factor Time Taken to Calculate (years)

Arimaa 25, 0005 = 9.765625× 1015 3.1× 1011

Go 2005 = 3.2× 1011 10.1

Chess 305 = 2.43× 107 7.7−4

Chess has the smallest branch factor and is why Deep Blue was so effective against Kasparov [8].
All Deep Blue did was to construct a massive search tree of every possible move and choose the
best one based on an evaluation function. However, Arimaa has the greatest branching factor
and thus, a 5 move look ahead of every possible move in Arimaa is infeasible. In the example, a
computer that can perform 1,000 evaluations per second has been used. Obviously faster computers
exist, but for Arimaa even with the fastest computer in the world it would still take hundreds
of thousands of years to find the best move in the tree. That is why different tree building and
search techniques must be explored.

Arimaa is a game of strategy, not tactics and is why computers find it difficult to play. Since
capturing an enemy’s piece involves pushing them into a trap, an attack scenario might take three
or four moves to set up, thus in order for the computer agent to anticipate this it must look ahead.
As the example above showed, this is infeasible for brute force methods. This slow moving game
means that a player may escape multiple threats on its pieces and so a strategic avoidance of a
capture in one area of the board, may affect the other side of the board 20 moves later.

Starting positions must also be considered as this further complicates computers ability to play
effectively. To set up the game, Gold goes first and places their pieces, in any order, on the first
two rows closest to them. Silver may then observe where Gold has placed their stronger and
weaker pieces and act accordingly. Figure 3.7 shows a possible starting position for Gold and
Silver. The fact that no two starting positions are likely to be the same for any two games means
that a database of starting positions is infeasible. End games are similar because often there are
still many pieces on the board and thus constructing an end game database is also infeasible.

Figure 3.7: Possible starting positions for Gold and Silver

Picture used from [17]
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3.3.5 Easy For Humans
Despite there being a very large branching factor for Arimaa, humans are not affected as much
because they use knowledge of past games to decide which move should best be played [18].
Arimaa’s rules are intuitive and easy to learn and thus humans can play at a reasonable standard
quicker then a computer can. There is no need to memorise end games or start games therefore
humans can concentrate on playing each game as it comes, instead of knowing predefined moves
to be played.
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Chapter 4

Project Goals

The goal of this project is to implement the UCT algorithm and Monte-Carlo Simulation in an
agent, called bot_degree, which will play Arimaa. The UCT algorithm will be fine tuned to
perform more efficiently, once bot_degree is running, by changing the bias. The ultimate goal is
to beat bot_bomb at least once. This would be a great achievement as bot_bomb is the best
Arimaa playing agent on the Arimaa server [14] at present. The rest of this chapter is concerned
with the requirements that this project will fulfil.

4.1 Functional Requirements
The following list describes the main functional requirements of the project, with the most impor-
tant at the top of the list.

1 Read the current board state using the notation described in Appendix A.1 and the techniques
described in Appendix A.4.

2 Output a legal move to be played based on the notation described in Appendix A.1 and the
techniques described in Appendix A.4.

3 Choosing a move via the UCT algorithm must consist of building a tree of selected moves that
have been evaluated using Monte-Carlo Simulation.

4.2 Non-Functional Requirements
The following list describes the main non functional requirements of the project, with the most
important at the top of the list.

5 Must be written in C/C++ using pointers and preallocation of memory where ever possible in
order to increase the efficiency of the program.

6 When playing on the Arimaa server, bot_degree must make a move within the timing limits of
the game as described in Section A.3. A move must be made in less then T seconds or (M
+ R) seconds, whichever is less, otherwise will lose automatically.

7 Perform at least 10,000 simulations while still conforming to the specified time constraints.

4.3 The MoSCoW Approach
The following are the requirements of the project in more detail and priority.
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4.3.1 Must Have
1 A working move function that produces a sequence of legal steps (i.e. one move) within the

specified time constraints.

2 Ability to interface with the Arimaa server so that it can play against other bots.

3 An evaluation function that uses the techniques of MoGo.

4.3.2 Should Have
4 Win consistently against a program that chooses a random move

5 Win against lower ranked bots, that exist on the Arimaa server ranking system, with more then
50% success rate.

4.3.3 Could Have
6 Win against middle ranked bots, that exist on the Arimaa server ranking system, with more

then 50% success rate.

7 Win one game against bot_bomb

4.3.4 Would Like
8 Use some form of rule to decide where to place each piece based on the other player (only when

Silver).

9 Win against bot_bomb with more then 50% success rate.
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Chapter 5

Agent Design

The Arimaa website [14] provides much information as to how an agent can be implemented to
play the game of Arimaa. It provides a set of sample bots that can be used as a starting point and
a set of scripts that can be used to test the bots offline without connecting to the Arimaa server.
The bot r0, created by Don Dailey [14], is a random Arimaa playing bot that uniformly chooses
a random move from all the unique moves that exist given a particular board position. This was
used as a starting point for bot_degree. To test bot_degree, r0 has been utilised using the offline
Perl scripts.

The bot r0 contains a main function which is used by the offline Perl scripts and the Arimaa
server to run the bot. The function that produces a move for r0, called “begin_search” was
replaced by a function called “move” that contains the Monte-Carlo Simulation and the UCT
evaluation that bot_degree uses. In order to implement Monte-Carlo simulation, bot_degree
has to calculate random moves from a given board position. This involved using and modifying
the existing random move function within r0, called “root”. The function “root”, calculates all
possible moves that exist, from a given board position that is passed into the function, and then
chooses one of them. If the random move chosen is unique then “root” returns the move, or else
it randomly selects another move.

Each time it is bot_degree’s turn to move, it receives a board position from which it will make
a move. To do this, bot_degree creates a new tree structure and makes this board position
the root of the tree. Subsequently, bot_degree then builds the tree as illustrated in figure 5.1.
Lines 3-5 descends through the tree, starting at the root, until the UCT algorithm is satisfied
either by reaching a leaf node or by deciding to explore a particular Node within the tree. This
decision of whether to descend another level or to explore the current node, was initially random,
i.e. there was a 50% chance that the algorithm would descend to another level. However it
was decided that a more “intelligent” way of descending the tree was required and thus a decay
function was implemented that initially does more exploration then exploitation. See section 7 for
an explanation of the decay function as well the tests that were carried out to find the optimal
variable values. Once line 3-5 have completed, d contains the node that the UCT algorithm
stopped at during the descent of the tree.

Line 7 chooses a random move from d’s board state and then adds it to the tree, line 8. Line
9 calculates the payoff of d by randomly simulating a game from d’s board position to the end.
The payoff is either 1, if d’s board state resulted in a win, or 0 otherwise. The calculated payoff
is then added to each node’s payoff that was visited during the descent through the tree, and
the number of times each node was visited is incremented by 1, line 10. Lines 2-11 are repeated
until the number of simulations required has been reached. The child node of the tree’s root that
satisfies the UCT algorithm is selected and its move is returned by “move”. To construct the tree
that will be used during the “move” function, a class called “core::tree”, which is available from
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[13], was used. It uses the notion of iterators to traverse and manipulate the tree, which is highly
appropriate for bot_degree as fast and efficient traversal of the game tree is desired.

Figure 5.1: Pseudo code of how bot_degree will build the game tree

1 nEpisodes := # of simulations to perform
2 for i := 1 to nEpisodes do
3 repeat
4 d := descendUCT;
5 until (UCT algorithm is satisfied)
6
7 m := createRandomMove(d);
8 tree.add(m);
9 payoff := simulate(n);

10 updateVisitedNodes(payoff);
11 end for
12
13 move := child of the root that satisfies the UCT algorithm;
14 return move;

Figure 5.2 describes the detailed design structure of bot_degree in the form of a UML Class
diagram. A description of the design for each class along with its functions and variables are as
follows:

Node Contains all the data associated with each node of the tree structure. During each episode,
the program descends through the tree evaluating the nodes based on the UCT algorithm,
section 3.1.1, and eventually will create a new node which is added to the game tree.

boardPosition The variable that describes everything associated with the board position
that this node is representing. Amongst other data, it contains a 2-Dimensional array
of 14 bit boards which represent all the pieces on the board. The bit boards are indexed
by colour (0 for Gold, 1 for Silver) and then by type (0 for empty squares, 1 for rabbits,
2 for Cats, 3 for Dogs, 4 for Horses, 5 for Camels and 6 for Elephants).

main_line The variable that describes the sequence of steps that were applied to the
parent of this nodes board position that results in this nodes board position. When the
simulations have finished, it is this variable that is returned by the GetMove class.

count The variable that describes how many times this node has been visited during the
traversal of the tree structure.

payoff The variable that describes the total payoff that this node has experienced during
the simulations.

Tree Contains all the functions and variables that are used to construct a tree structure. The
game tree is constructed during the simulations, and is traversed by the UCT algorithm.

nodes_array The array of nodes that is used to construct a tree structure.
insert() The function used to insert nodes into the tree structure.

GetMove Contains all the functions and variables that are used to select a move given a particular
board state.

visited_nodes The array of nodes that have been visited through the descent of the tree
structure. This is needed because the payoff and count of each node within this array
must be updated after each simulation.
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tree The tree variable that is used to construct a tree structure of nodes.
main() The function that is used by the offline Perl scripts and the Arimaa server to run

bot_degree. Within this function move() is called.
descendUCT() The function that returns the child node of a node within the tree structure

that maximises the UCT algorithm. Within this function chooseUCT() is called to
calculate the UCT value for each child node.

chooseUCT() The function that actually calculates the UCT value for each child node of
a node within the tree structure. This function returns the number of the child that
maximises the UCT algorithm, (i.e. if 1 is returned, it indicates that the first child of
the node maximises the UCT algorithm)

updateNodes() The function that updates the payoff and count of every node within the
visited_nodes array. The payoff is calculated by the simulate function, count is simply
incremented by 1.

simulate() The function that simulates a random game from the current board state, passed
into the function, to the end. The payoff of the random game is then evaluated as either
1 or 0, depending on which side wins, and returned.

move() The function that receives a board position, constructs and builds the tree and
then returns the chosen move that maximises the UCT algorithm. Within this function
descendUCT(), chooseUCT(), updateNodes() and simulate() are called.

randomMove() The function that receives a board position and returns a random legal
move. This function is a modification of the existing random move function that exists
within r0.

decay() Determines whether the UCT algorithm explores or exploits based on the current
episode.

Figure 5.2: The UML class diagram for the design of bot_degree
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Chapter 6

Testing

This chapter details the techniques used in order to test bot_degree.

6.1 Design
A number of test cases were designed in order to test the robustness, functionality and reliability
of bot_degree. See Appendix E tables E.1 - E.7 for a detailed list of test cases, and tables E.8 -
E.14 for the results. Many different types of test strategies were used in order to test bot_degree
thoroughly :

Unit Testing Was used to test the Node class and the getMove class

Stub/Driver Testing Was used to test the individual functions which were written for bot_degree.
These include:

• simulate
• descendUCT
• chooseUCT
• updateNodes
• move
• randomMove
• decay

White Box Testing Was used to particularly test the descent from the root of the tree to a
leaf, using branch and path testing, making sure that all paths through the code are tested
properly.

Performance Testing Was used to test bot_degree over an extended period of time while
recording statistical information, such as number of wins, loses, moves per game and how
many simulations where performed.

In order to run each test, the Southampton Linux cluster, called Lyceum, was used. This cluster
consists of 128 processors split into 16 nodes and provides the ability to run multiple tests in par-
allel, greatly reducing the length of time necessary to complete all the tests. This was particularly
useful when running the performance tests, as a great number of games was required to be played
over an extended period of time, with some games taking as much as 3 hours to play.
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Chapter 7

Agent Evaluation

An evaluation of bot_degree was carried out which involved various tests being completed. Sec-
tion 7.1 details the decay function used by the UCT algorithm, while section 7.2 describes the
performance tests that were carried out.

7.1 The Decay Function
As described in section 5, bot_degree uses a decaying function that decides the trade-off between
exploration and exploitation. The objective of this decay function was to provide more exploration
when the number of episodes completed was small, by expanding the game tree near the root,
and then exploiting the vast amount of nodes within the game tree when the number of episodes
completed was large. The reason for using a decay function is because the UCT algorithm works
best when many nodes near the root of the tree have been explored at least once [6], and therefore
will converge more effectively towards the “best” move for the given board position.

Equation 7.1 shows the decay function which has been used in bot_degree, where V is equal to 0.7
and d is the decay, in the interval of [0,1], based on the current episode, f , and the total number
of simulations that will be used, s. During the UCT algorithm’s descent through the game tree,
bot_degree will produce a random number and compare with d. If the random number is smaller
then d, then the UCT algorithm will descend one level through the tree to the node that maximises
the UCT algorithm, otherwise bot_degree will calculate a random move from the current node,
add it to the tree and simulate a random game to the end, as explained in section 5. Therefore
when the number of episodes completed is very small, d will be small, and thus will drive the UCT
algorithm towards exploration, instead of exploitation, of nodes.

d = exp( −1
s× V × (s− f)) (7.1)

A set of tests were designed in order to find the optimal value for V . Each test involved bot_degree
playing a number of games against r0 with 1,000 simulations per move and varying values of V . The
standard error1 of the results was calculated, see table 7.1. The most pessimistic percentage win
when V is 0.7 using the 95% confidence interval is 74%. Similarly the most optimistic percentage
win when V is 0.2 using the 95% confidence interval is 73.9%. Therefore even with this worst

1

Standard Error =

√
p× (1− p)

N
(7.2)

Equation 7.2 was used to calculate the standard error where p is the percentage of bot_degree wins and N is the
number of repeated tests carried out for the given number of simulations, which did not produce a bad position.
The standard error can be used to calculate the 95% confidence interval which gives an estimator of how much the
percentage of bot_degree wins fluctuates. The 95% confidence interval is simply twice the standard error.
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case scenario, the results show that the optimal value for V is 0.7. When V is nearer to 0.9, the
UCT algorithm performs more exploitation by descending more levels in the tree, whereas when
V is nearer to 0.2, the UCT algorithm is more likely to explore by adding new random moves to
the game tree. Interestingly enough it seems that the UCT algorithm works well if it is either
more inclined to explore new moves or exploit existing ones, but behaves very poorly if it tries to
have an even balance of both. Therefore using V equal to 0.7 means that initially bot_degree will
perform exploration of moves but will have a small bias towards exploiting moves already in the
game tree. This bias of exploitation will increase as the number of episodes completed increases
and will end with bot_degree almost exclusively exploiting moves within the game tree.

Table 7.1: The standard error of bot_degree wins against the random bot r0 with varying values
for V

Value of V Number Of
Games
Played

Percentage Of
Bot_degree Wins

Standard
Percentage Error

95%
Confidence
Interval

0.9 67 46.3% 6.1% ± 12.2%
0.8 68 57.4% 6.0% ± 12.0%
0.7 75 82.7% 4.4% ± 8.7%
0.6 85 21.2% 4.4% ± 8.9%
0.5 84 23.9% 4.6% ± 9.3%
0.4 85 24.7% 4.7% ± 9.4%
0.3 87 33.3% 5.1% ± 10.1%
0.2 88 63.6% 5.1% ± 10.3%

7.2 Performance Tests
Once the decay function had been implemented, a series of tests were carried out to see how
bot_degree performs against different Arimaa playing bots. When each test was carried out,
whenever bot_degree produced a “bad step” error, this test was not taken into account. See
section 8.3 for an explanation of this error. The majority of the tests involved bot_degree playing
against the random bot r0 with varying number of simulations, see table 7.2. The table shows
that as the number of simulations that bot_degree uses increases, the percentage that bot_degree
wins by increases as well. When simulating just 10, 50 or 100 times, bot_degree behaves randomly
because the UCT algorithm does not sample the nodes within the game tree enough and therefore
does not have enough statistics to find the optimal move. As bot_degree increases the number
of simulations above 500, it can be seen that the percentage of wins rises considerably. This is
because many moves have been explored within the game tree and thus the UCT Algorithm has
enough statistics to descend the tree effectively and choose the “best” move.

Interestingly, 1,000 simulations per move produced the best results whereas 50,000 simulations
produced the worst results for tests that used simulations above 1,000. One reason for this is the
results of the tests were effected by bot_degree’s known issue of producing a bad position around
21% of the time. The outcome of the 21% of games that resulted in a bad position could have
favoured either Arimaa bots. For instance it may be the case that whenever bot_degree produced
the error, r0 was about to win, thus biasing the results towards bot_degree. This could have been
the case with the test results when 1,000 simulations per move was used, however it is impossible
to tell, and only speculations can be made. See section 8.2 for possible ways in which this error
could be fixed.
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Table 7.2: The standard error of bot_degree wins against r0 with varying simulations

Number Of
Simulations Per

Move

Number Of
Games
Played

Percentage Of
Bot_degree Wins

Standard
Percentage Error

95%
Confidence
Interval

10 672 51.9% 1.9% ± 3.9%
50 611 47.8% 2.0% ± 4.0%
100 603 47.4% 2.0% ± 4.1%
500 587 64.6% 2.0% ± 3.9%
1,000 570 75.4% 1.8% ± 3.6%
5,000 533 70.9% 2.0% ± 3.9%
10,000 597 73.2% 1.8% ± 3.6%
50,000 233 68.2% 3.1% ± 6.2%

Another reason for 1,000 simulations per move producing the best results could be because an
equal number of games for each test was not carried out. The explanation for this is that even
though the intentions of the testing was to have bot_degree play 800 games for each different
number of simulations, the use of the Linux cluster had timing constraints therefore making it
very hard to run tests for long periods of time, especially when some games took longer then 3
hours each. Furthermore since bot_degree produces the bad position error, it was very difficult
to get the same number of tests completed for varying number of simulations.

It can be observed that from 50 simulations to 500 simulations, there is a 16.8% increase in
bot_degree wins. The most optimistic percentage of wins using the confidence interval for 50
simulations is a win percentage of 51.8%. Similarly the most pessimistic percentage of wins for
500 simulations is 60.7%. However this still produces an increase in win percentage of 8.9% proving
that increasing the number of simulations for bot_degree increases the percentage of bot_degree
wins. This is not the case for 500 to 5,000 simulations as using the most optimistic percentage
win for 500 simulations and the most pessimistic percentage win for 5,000 simulations does not
produce an increase in bot_degree wins and actually produces a decrease of 1.5%.

The difference between the percentage wins above 1,000 simulations is too close together to
make the assumption that as the number of simulations above 1,000 is increased, the number
of bot_degree wins increases. This is evidently due to noise and can be particularly noted in the
50,000 simulations test as the confidence interval is approximately 2% higher then the rest. In
order to produce more meaningful results, many more tests would have to be carried out, thus re-
ducing the confidence interval. However even with the current set of tests, it can still be seen that
as the number of simulations per move is increased, the number of bot_degree wins increases. This
proves that using UCT and Monte-Carlo Simulation is a viable starting point to implementing an
Arimaa playing agent that can play the game of Arimaa well.

Other tests were carried out on bot_degree using more “intelligent” bots as its opponent. The
bots that bot_degree played against were called “bot_SampleC” and “bot_fairy” which are both
available from the Arimaa website [14]. Both these bots use an evaluation technique of playing
the game which involves calculating every possible move from a given board position and then
returning the “best” move based on some evaluation heuristic. In each test bot_degree used
1,000 simulations per move and the tests were run 400 times. The results of the test showed
that bot_degree won once in 400 games, with a percentage win of 0.29%, against bot_SampleC,
and did not win at all against bot_fairy. Another test was carried out against bot_SampleC
with bot_degree using 20,000 simulations per move. This test was run 364 times and resulted in
bot_degree winning none of the games.
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The one time when bot_degree won against bot_SampleC was obviously random since all the other
tests showed that bot_degree lost. The reason why bot_degree lost almost all the games played
against these evaluation bots is most likely to be because bot_degree performs no evaluation of the
moves that it calculates. Therefore moves that for instance trap its own pieces or help the opponent
are used within the game tree, regardless of how bad the move is. As proved in [4], the UCT
algorithm benefits from an increased number of Monte-Carlo Simulations, therefore bot_degree
may not be simulating enough games for the UCT algorithm to choose the “best” move. See
section 8.2 for possible ways in which bot_degree’s performance can be improved. It was decided
that bot_degree would not be tested against the best Arimaa playing agent bot_bomb, contrary
to the project requirements, because bot_degree performed so poorly against other agents that
evaluate a position and thus would have been pointless.

As expected, when the number of simulations per move increases, the time taken for bot_degree
to complete a move increases as well. This is not only because bot_degree has to simulate more
games per move, but also because it has to build and traverse a bigger game tree each episode.
Therefore the greater the number of simulations per move, the more time bot_degree must spend
calculating the UCT algorithm for each node at each level. See table 7.3 for the results of running
bot_degree against the bot r0 with varying simulations per move. It should be noted that games
that produced a bad position were also factored into this table.

Table 7.3: The time taken for bot_degree to play a game against the random bot r0 with varying
simulations

Number Of Simulations
Per Move

Number Of Games
Played

Time Taken (h:m:s)

10 768 0:03:40
50 799 0:01:58
100 783 0:02:18
500 800 0:02:52
1,000 800 0:04:28
5,000 726 0:17:16
10,000 799 0:34:31
50,000 321 3:35:17

The time taken for r0 to produce a move does have a slight effect on the game length, but this is
very small and is considered insignificant towards the overall result. The general trend of the results
do show that as the number of simulations per move increases, the time taken for bot_degree to
play a whole game is increased. However there does appear to be an anomaly within the results,
for the tests when the number of simulations was 10. The explanation for this could be that
during that time, the Linux cluster, on which the tests were run, was slower then usual because of
a high number of jobs being computed and thus processed the tests slightly slower then normal.
As bot_degree is very slow at playing a game above 10,000 simulations, section 8.2 describes ways
in which bot_degree could be optimised to run faster and perform more simulations per move.
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Chapter 8

Conclusions

In this chapter, the project as a whole is evaluated and improvements suggested along with the
errors that exist within bot_degree and possible ways to fix them.

8.1 Project Evaluation
A commentary was kept by the author so that the evaluation of the project could be easily made.
The following sections describe how the project was managed as well as the project goals that
were fulfilled.

8.1.1 Project Management
Initially, a lot of research was made in the area’s of Chess, Go and Arimaa, see section 3, in order
to prepare for the design, implementation and testing of bot_degree. Right from the beginning
it was decided that C/C++ should be used instead of Java because of its low level capabilities
and efficiency when using pointers. This was a good choice because the code needed to be as fast
as possible due to the high amount of simulations required by Monte-Carlo Simulation and the
UCT algorithm. Regular meetings were held with the project supervisor, Dr. Alex Rogers, to
discuss the direction of the project and any major issues that were happening. The UCT algorithm
was implemented in Matlab first, see Appendix B, to test the effectiveness of it against another
tree traversal algorithm. The reason it was tested first was because it would then be easier to
implement in C/C++ having explored its possible problems and successes.

A Gantt chart was drawn up, see Appendix C, which was the predicted work load for the entire
project. This was stuck to as much as possible but after continued work on the project it became
clear that some areas would take longer then others. For instance even though in the initial
Gantt chart the authors exam commitments had been factored in, it was believed that the project
could still be implemented and tested during this time. This was however not the case because
all the author’s time and effort went into revising for exams. This did not affect the project at
all because most of the project had already been completed; much of the implementation had
been completed, many sections of this report had been written already and thorough continuous
debugging of bot_degree’s code had been employed. This is reflected in the final Gantt chart, see
Appendix D, which shows a gap in all aspects of the project during exam time. Implementation
of bot_degree took longer then expected because of unexpected errors within the code. One such
error was that during the execution of the code it would randomly terminate sometimes when
using the game tree.

After many days of checking board states, variables and functions that all used the game tree it
was discovered that at the start of each episode, the game tree iterator was not being initialised
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to the root of the tree and thus during the descent through the tree, the iterator would sometimes
iterate past the last child on the tree and would thus terminate bot_degree prematurely. This
was fixed by initialising the tree iterator to the root of the tree at the start of each episode and
was tested by checking the board states, variables and functions that used the game tree iterator.
Since implementation was taking longer then expected, the project goals had to be prioritised.
Therefore it was decided to focus the attention of the project on getting bot_degree to produce a
move, and not try to conform to the Arimaa timing constraints imposed on the Arimaa server, (see
non-functional requirement 6 in section 4.2). However there is still the possibility of modifying
bot_degree to be able to play on the Arimaa server and this is discussed in section 8.2. Initially it
was intended that bot_degree would try to use a database of good starting positions when setting
up its pieces for the start of a game. If it played as Gold, (i.e. bot_degree would set up after
Silver had positioned all its pieces), then it would try to use the position of Silvers pieces to set
up a strong starting position.

However after much research using the Arimaa website [14], and papers [18, 3] it was concluded
that using a starting position database is almost impossible since there are over 16 million different
possible starting positions to choose from. See equation 8.1 which shows how many unique starting
positions are possible, where 16 is the number of squares to set up on, and 6 is the number of
different types of pieces that exist in Arimaa. Thus given the timing constraints posed by this
project and the fact that implementation of bot_degree was taking longer then expected, no
further research was considered for a starting positions database.

166 = 16, 777, 216 (8.1)

Initial testing of bot_degree with varying number of simulations produced some poor results.
With as little as 100 simulations per move, it was taking bot_degree approximately 45 minutes to
complete a game. This was unacceptable as the UCT algorithm needed many more simulations per
move in order to be effective at choosing the “best” move. Therefore the random move function
was modified and optimised so that it executed faster. This was achieved by calculating a select
number of random moves and choosing one at random instead of calculating all possible random
moves and selecting uniformly from them. Additionally, the random move function was modified
not to check whether a chosen move was unique, as this slowed the original random move function
immensely. These modifications have sacrificed true unified randomness for speed, however it was
deemed unlikely that this would make a significant difference. After the modifications, bot_degree
could complete a 100 simulations per move game in as little as 1 minute.

Up until this point it was assumed that bot_degree was building the game tree properly. However
after initial testing of bot_degree, against the random bot r0, with increasing number of simu-
lations, the number of times that bot_degree won did not increase, which was contrary to what
was expected. This was investigated by checking the number of children of the root, just before
bot_degree returned a move. It was found that in fact only one child of the root existed in all
cases, see figure 8.1, and thus the UCT algorithm was always choosing the only child of the root.
This problem had something to do with the way the tree class was being used. If a node was being
added as a child of the root, using the tree iterator to do this produced the aforementioned error,
thus a conditional statement was added which made sure that if a node was being added as the
child of the root, the actual tree object was used instead of the tree iterator.

This fixed the problem and the tree grew in the appropriate manner from then on, however
bot_degree now had 2 more problems associated with producing a move, they were:

1. Sometimes bot_degree would choose a move that did not change the board state, and thus
lost the game by default. For example the following move, Ha2n Ha3s Rf3w Re3e, leaves
the board in the same state as before this move was made, it simply moves the Horse to an
adjacent square, moves it back again and then does a similar thing with the Rabbit.
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Figure 8.1: The state of the game tree being built incorrectly

For the UCT algorithm to work, it needs to have many children of the root to evaluate. With only one
child of the root, the UCT algorithm was always choosing this node and thus was not making any

difference to the outcome of the game, making bot_degree act random.

2. Sometimes bot_degree would choose a move that was wrong. For example it would try to
move pieces from squares that they did not occupy or introduce entirely new pieces so that
an illegal amount of the same type of piece now existed on the board. These “bad moves”
would result in bot_degree losing by default.

Both these errors were not found earlier because of the problem with the way the tree was being
built. Since the root only had one child, and thus was the move chosen by the UCT algorithm, it
meant that it was highly unlikely that the one child of the root would be either a move that did
not change the position or a bad move and therefore went undetected. The reason bot_degree
would sometimes produce a move that did not change the state of the board was because the
random move function did nothing to discriminate the select number of moves it produced. This
error was overcome by testing for a move that did not change position during the random move
function. If the position did not change, bot_degree would reduce the move to one step and then
calculate a select number of random steps to produce a 4 step move. It would then attempt to
pick a move at random until the move changed the state of the board. The bad move error is still
present in bot_degree, however it has been reduced in frequency, see section 8.3 for more details.

A lot of software testing was performed on bot_degree to ensure that there were as few errors
as possible, see appendix E. Performance testing was also carried out in order to evaluate how
good bot_degree is at playing Arimaa, see section 7 which discusses the results of bot_degree’s
evaluation against other Arimaa playing Agents.

8.1.2 Project Goals
During the project the main goal was to get bot_degree to be able to play a game of Arimaa against
another player using the UCT algorithm and Monte-Carlo Simulation. This main objective was
achieved along with many of the other project requirements. All of the functional requirements,
see section 4.1, and non-functional requirement 5, see section 4.2, were achieved. As explained
in section 8.1.1, non-functional requirement 6, which involved conforming to the Arimaa server
timing constraints, was not implemented because it was decided not to be feasible in the amount
of allocated time for the project. However non-functional requirement 7, was partially completed
as bot_degree can perform 10,000 simulations per move, with each game taking on average 35
minutes to complete.

The requirements of the project were prioritised in section 4.3 using the Moscow approach. Re-
quirement 1 was almost completely satisfied, however occasionally the random move generator
produces a move that does not exist and thus loses the game. This is a known issue, see sec-
tion 8.3 for an explanation of the issue along with possible ways to resolve it. Requirement 2
has been achieved because bot_degree has been constructed from an existing Arimaa playing bot
and thus conforms to the interface requirements of the Arimaa server, see section A.4. However,
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bot_degree does not consider timing constraints imposed by the Arimaa server, as explained in
section 8.1.1, and thus will lose automatically if it runs out of time making a move.

Requirement 3 has been completely satisfied because both Monte-Carlo Simulation and the UCT
algorithm have been implemented in bot_degree. Requirements 4-7 and 9 have been tested and
evaluated, see section 7 for an evaluation of bot_degree’s performance against other Arimaa
playing bots. Requirement 8 was not implemented because it was decided that trying to construct
a way to choose the best starting position based on the other player was infeasible given the
amount of time allocated to this project, see section 8.1.1 for further explanation.

8.2 Improvement
A substantial improvement to bot_degree would be achieved by optimising the random move
generating code. This is because the random move function is used the most during bot_degree’s
execution. For instance, if bot_degree were simulating 10,000 random games per move, with each
random game on average having 40 moves per player, this would amount to 800,000 function calls
to the random move function, (i.e. 10, 000 × 2 × 40 = 800, 000). If this function call took 0.0003
seconds to complete, this would still amount to over 4 minutes per move and thus over two hours to
complete a whole game. Obviously there are machines that will be able to run bot_degree’s code
faster, however to increase the efficiency of the UCT algorithm and Monte-Carlo Simulation, many
more simulations need to be completed in order to guarantee that the UCT algorithm converges
to the best move. Consequently if this factor is not taken into account, bot_degree will not scale
at all.

Another area of bot_degree’s code that could be optimised to run faster would be the way the
UCT algorithm descends the game tree. As described in [6], MoGo has already benefited from
using multi threads therefore extending bot_degree to use multi threading is definitely plausible.
The modifications that would have to be made would be to use mutual exclusion techniques to
lock the tree for each thread. Each thread would then be able to descend a different route down
the tree concurrently and therefore bot_degree would be able to use more then one processor to
its advantage by simulating multiple random games simultaneously. This technique would greatly
reduce the time taken per move and thus would allow bot_degree to increase the number of
random simulations it could achieve, enhancing the effectiveness of the UCT algorithm.

Currently, during Monte-Carlo Simulation, a random game is played to the end and evaluated
as either being a 1 or 0. However as described previously, this can take an extended period of
time if the number of simulations per move is large. Therefore an evaluation function could be
implemented which evaluates a board position and decides which side would win, if the game were
to carry on to the end. The number of random moves that are simulated before the evaluation
function is used would have to be tested, however using this method would decrease the number of
function calls to the random move function per Monte-Carlo Simulation and thus would speed up
the execution time of bot_degree. This technique could be further improved by using a weighted
bias so that instead of using either 1 for winning and 0 for losing, the payoff of a particular board
state could be in the interval of [0,1] based on some heuristic evaluation. As long as the heuristic
evaluation was good at distinguishing between excellent winning moves and adequate winning
moves, this would bias the exploitation of the UCT algorithm towards better winning moves.

When bot_degree adds a node to the game tree, it chooses a move at random, creates a Node
object and adds it to the tree. As explained in section 7, this is a possible reason why bot_degree
performs very poorly against other agents that actually evaluate a position because the moves that
it chooses are not evaluated in any way. Therefore a possible improvement would be to calculate
random moves and then evaluate a number of them based on some evaluation function. The
random move with the best evaluation would then be added to the tree, and thus only “better”

27



random moves would populate the tree. Consequently this would aid the UCT function in choosing
better nodes to exploit and explore and would improve the performance of bot_degree.

One way to evaluate board positions would be to look for patterns. MoGo already uses patterns to
its advantage and is definitely a plausible improvement to bot_degree. As explained in [6], using
patterns greatly improves the effectiveness of Monte-Carlo Simulation and the UCT algorithm
because it drives the simulation towards better moves and thus builds the game tree with more
meaningful moves as opposed to just random ones. For instance, after experimentation it has
become apparent that bot_degree will move its own pieces into the trap squares, or move a piece
between two squares repeatedly over many moves making no progress. With pattern matching
this could be reduced.

As suggested in [11], another way to optimise the UCT algorithms trade-off between exploration
and exploitation is to use a weighted bias within equation 3.1, section 3.1.1. This has been
implemented in MoGo and has been verified to improve the UCT algorithm, therefore there is
potential to implement this technique in bot_degree as well. It suggests that equation 8.2 should
be used, where t is the current episode, s is the number of times arm i has been played up to time
t, D is the estimated game length starting from the current node and d is the distance from the
root. Therefore if the UCT algorithm is currently visiting nodes far away from the root, the bias
will be small and will thus bias the UCT algorithm less.

bias = ln( t
s

)( D+d
2D+d ) (8.2)

As explained in section 8.3, bot_degree produces an error around 21% of the time and thus
prematurely terminates the game. Bot_degree uses a transposition table to keep track of moves
that it has produced and also uses it when calculating possible legal moves from a given board
position. Since bot_degree uses the underlying code from the random bot r0, which was not
implemented with bot_degree in mind, it could be that bot_degree is using this code in slightly
the wrong way and could be a reason for the error. For instance, it may be the case that the
state of the transposition table needs to be saved before a simulation is carried out, and then
restored after the simulation has finished, therefore achieving the effect that the simulation never
took place as far as the transposition table is concerned.

Another way to possibly reduce the error would be to save the state of the transposition table
within a node. Doing this would mean that when a new random move was to be created from
a particular node, the transposition table could be initialised to the transposition table within
the node and thus the random move function would hopefully not get confused and produce bad
moves. However the drawback of saving the transposition table within each node would be that
the total memory required by bot_degree would be greatly increased.

8.3 Known Issues
One of the known issues with bot_degree is that it will sometimes produce a move that has nothing
to do with the previous board position. Once this move has been played the offline Perl script
called “match”, that plays two agents against each other, will detect this bad move and produce
the following error, “bad step” followed by the move that produced the error. The Perl script will
then terminate, prematurely ending the game between the two agents. When this problem was first
discovered, bot_degree produced a bad step approximately 50% of the time. This was obviously
unacceptable and meant that it was impossible to evaluate bot_degree effectively without this
problem biasing the outcome.

Tests were carried out to determine the nature of the error. These involved checking the board
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states before, during and after the random move function was executed. It was discovered that
if the simulation part of bot_degree was not executed, then the error was reduced to occurring
around 5% of the time. Obviously the simulation part of bot_degree is needed to evaluate a board
position, therefore a second random move function was created, which closely resembled the first
apart from a few lines of code. This new random move function was used during the simulation
part of bot_degree and helped reduce the bad moves to happening around 21% of the time. Since
this is a much smaller percentage, it was decided that given timing constraints, it would not be
feasible to try and reduce the percentage error further. See section 8.2 for possible ways to fix the
error.

During the tests it became evident that the more simulations bot_degree carried out, the more
likely bot_degree was to produce a bad move see table 8.1. The reason for this trend in the
increase of bad moves is because if the number of simulations is increasing, bot_degree will call
the random move function more frequently. Therefore if the random move function is called more
frequently, there is more of a chance that bot_degree will generate a bad move.

Table 8.1: The percentage of bad moves with varying simulations

Number Of Simulations Per Move Number Of Games Played Percentage Of Bad Moves

10 768 12.4%
50 799 23.5%
100 783 22.9%
500 800 26.6%
1,000 800 28.8%
5,000 726 26.7%
10,000 799 25.3%
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Appendix A

Arimaa Server Rules

This chapter describes the various constraints that are imposed on the Arimaa server and further
rules that apply to Arimaa.

A.1 Notation
Every game that is played on the Arimaa server is recorded for future reference, therefore there
are a number of different notations that must be taken into account [14]. This notation is also
important because bot_degree must receive a position file, as input, containing the current board
state, and produce a string, as output, containing the move that it would like to make. This
notation uses upper and lower case letters for Gold and Silver respectively. Indication of each
piece is as follows: Elephant(e,E) Camel(m,M) Horse(h,H) Dog(d,D) Cat(c,C) Rabbit(r,R). See
figure A.1 for an example board state. In the example it shows the location of the traps, marked
by an x, but this is not a necessity. The first line of the position file, indicates whose turn it is, in
this example it is Silver’s 8th turn.

Figure A.1: An example input board state

At the start of the game each player must specify where they want their pieces to be placed, this is
always recorded as being the first move of each player. This is done by indicating the piece using
a symbol, as above, and then the square that it is to be placed on. For instance ea2 means the
Silver Elephant starts on square a2. Moves are recorded in groups of fours. Each group contains
the piece to be moved, the square it is currently occupying and the direction it is moving in.
The direction can either be n, s, e, w for North, South, East and West respectively. Therefore
a possible output giving a move could be cd3n cd4e ce4s ce3e which indicates that the Silver
Cat moves from square d3 to square f3 in four moves.
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A.2 Special Situations
There are a few special rules that exist in Arimaa. A player loses the game if they lose all their
Rabbits, or unable to move any of their pieces. An enemy rabbit may be pushed or pulled into
the goal squares, but if after the move is complete it remains there, the enemy Rabbit’s player
wins. If both players lose their Rabbits in the same turn, then the player making the move wins
the game. Repetition is not allowed in Arimaa, therefore if the same board position and move is
made three times, that move is made illegal and a player must make a different move. If there
are no other moves that the player can make then they lose the game because they cannot make
a move.

A.3 Timing Constraints
Time constraints are used in official match games of Arimaa. This means that in order to use
the server to test bot_degree, it will need to conform to these extra rules. They can be found on
the Arimaa website [14] and the following is a summary of the main points. If a game is stopped
because of any of the time constraints, the player with the most pieces wins, however if no pieces
have been removed from the game then the player who moved second wins. At the start of the
game, time constraints must be specified. They are in the form of M/R/P/L/G/T, see Table A.1
for details.

Table A.1: The description of M/R/P/L/G/T, the time control format

Description Format example

M The amount of time per move minutes:seconds 0:30

R The amount of time a player has in re-
serve

minutes:seconds 2:00

T The amount of time that a player must
make a move in

minutes:seconds 5:21

P The percentage of unused M that gets
added to R

number <= 100, number >= 0 100

L The limit the reserve can reach minutes:seconds 5:32

G The amount of time that’s allowed for
the game, may also be specified in the
number of turns, t, each player has be-
fore the game ends

hours:minutes or number t 24:59, 70t

A.4 Interfacing With The Arimaa Server
In order for bot_degree to be able to play Arimaa games against other agents, it will need to
interface with the Arimaa server as described in [14]. Bot_degree should accept a file that contains
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the current board state and the move number, it should then compute a legal move from this board
state and output the move to standard output, printf, using the notation described in Section A.1.
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Appendix B

The Effectiveness Of The UCT
Algorithm

An experiment was carried out involving 5 “arms of a bandit”, where each arms payoff consisted
of a fixed amount plus some random noise, see table B.1.

Table B.1: The payoff of each arm

Arm Fixed payoff Random Noise, x

1 0.87 −0.05 ≤ x ≤ 0.05
2 0.62 −0.20 ≤ x ≤ 0.20
3 0.75 −0.20 ≤ x ≤ 0.20
4 0.39 −0.10 ≤ x ≤ 0.10
5 0.69 −0.17 ≤ x ≤ 0.17

The experiment simulated 10,000 times of picking an arm using both algorithms, and was run
10,000 times in order to thoroughly test both algorithms and minimise error. The ε-Greedy
algorithm that was used had ε probability of choosing a random arm, and 1 − ε probability of
choosing the arm that had the highest payoff so far. Meaning if the ε-Greedy algorithm gets lucky
early on and chooses arm 1, it may end up performing very well. However if it is unlucky and
receives a one off high payoff from say arm 3 it will always think that arm 3 is the best arm to
choose and will under perform greatly later on in the experiment. Equation 3.1, section 3.1.1, is
the UCT algorithm which was tested against the ε-Greedy algorithm with ε set to 0.5. The mean
payoff and the mean payoff2 were calculated per iteration, along with the standard deviation, see
table B.2.

Table B.2: The results of the experiment between the UCT and ε-Greedy algorithms

Algorithm Mean payoff Mean payoff2 Standard Deviation

ε-Greedy 0.71 0.53 0.16
UCT 0.87 0.76 0.03

The results show that UCT has a 21% higher mean payoff then ε-Greedy, and a standard deviation
four times lower proving that UCT chooses the best arm, in this case arm one, more often then
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ε-Greedy, and thus is less prone to choosing an arm that produces a lower payoff. A graph was
plotted to show that unlike ε-Greedy, UCT goes through initial stages of learning, see figure B.1.
The cumulative mean payoff that each arm receives on each pull of the test was calculated, (i.e.
The cumulative mean payoff over all tests for the first pull of each test was calculated. The
cumulative mean payoff over all tests for the second pull of each test was calculated etcetera).
The cumulative mean payoff was plotted against the number of pulls within each test, however the
graph shows the first 80 pulls of the test because after this point the UCT has finished learning.

It can be seen initially that the UCT algorithm performs randomly for the first 5 pulls of the test.
This is because it must try each arm once before it can compute the arm which maximises the
UCT algorithm effectively. The learning stage of the UCT algorithm can be seen between pulls
1 and 50; it behaves worse then the ε-Greedy algorithm because it has not tried enough arms
yet in order for the it to choose the best arm. After 50 pulls the UCT has sufficiently explored
all the arms and has enough data in order to choose the arm with the highest payoff every time.
This is clearly seen because the UCT data points now reside above the ε-Greedy data points and
continue to do so for the remainder of the experiment. The ε-Greedy algorithm has no learning
as it performs quite randomly, this is the reason why the ε-Greedy data is assembled in a straight
line.

Figure B.1: The cumulative mean payoff of each pull of the experiment
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Appendix C

Initial Gantt Chart Of Project
Work
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Figure C.1: Page 1 of the initial project Gantt Chart
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Figure C.2: Page 2 of the initial project Gantt Chart
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Appendix D

Final Gantt Chart Of Project
Work
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Figure D.1: Page 1 of the final project Gantt Chart
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Figure D.2: Page 2 of the final project Gantt Chart
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Appendix E

Test Cases
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